scholarly journals Initial Assessment of the Molecular Epidemiology ofblaNDM-1in Colombia

2016 ◽  
Vol 60 (7) ◽  
pp. 4346-4350 ◽  
Author(s):  
Laura J. Rojas ◽  
Meredith S. Wright ◽  
Elsa De La Cadena ◽  
Gabriel Motoa ◽  
Kristine M. Hujer ◽  
...  

ABSTRACTWe report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandAcinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with three copies ofblaNDM-1) and a recombination “hot spot” for the acquisition of new resistance determinants.

2016 ◽  
Vol 60 (8) ◽  
pp. 4638-4645 ◽  
Author(s):  
Muhanad Mohamed ◽  
Connie Clabots ◽  
Stephen B. Porter ◽  
Paul Thuras ◽  
James R. Johnson

ABSTRACTEmerging multidrug-resistant (MDR) Gram-negative bacilli (GNB), includingEscherichia colisequence type 131 (ST131) and its resistance-associatedH30 subclone, constitute an ever-growing public health threat. Their reservoirs and transmission pathways are incompletely defined. To assess diarrheal stools as a potential reservoir for ST131-H30 and other MDR GNB, we cultured 100 clinical stool samples from a Veterans Affairs Medical Center clinical laboratory (October to December 2011) for fluoroquinolone- and extended-spectrum cephalosporin (ESC)-resistantE. coliand other GNB, plus totalE. coli. We then characterized selected resistant and susceptibleE. coliisolates by clonal group, phylogenetic group, virulence genotype, and pulsotype and screened all isolates for antimicrobial resistance. Overall, 79 of 100 stool samples yielded GNB (52E. coli; 48 other GNB). Fifteen samples yielded fluoroquinolone-resistantE. coli(10 were ST131, of which 9 wereH30), 6 yielded ESC-resistantE. coli(2 were ST131, both non-H30), and 31 yielded susceptibleE. coli(1 was ST131, non-H30), for 13 total ST131-positive samples. Fourteen non-E. coliGNB were ESC resistant, and three were fluoroquinolone resistant. Regardless of species, almost half (46%) of the fluoroquinolone-resistant and/or ESC-resistant non-E. coliGNB were resistant to at least three drug classes. Fecal ST131 isolates closely resembled reference clinical ST131 isolates according to virulence genotypes and pulsed-field gel electrophoresis (PFGE) profiles. Thus, a substantial minority (30%) of veterans with diarrhea who undergo stool testing excrete antibiotic-resistant GNB, includingE. coliST131. Consequently, diarrhea may pose transmission risks for more than just diarrheal pathogens and may help disseminate clinically relevant ST131 strains and other MDR GNB within hospitals and the community.


2018 ◽  
Vol 6 (14) ◽  
Author(s):  
Natacha Couto ◽  
Monika A. Chlebowicz ◽  
Erwin C. Raangs ◽  
Alex W. Friedrich ◽  
John W. Rossen

ABSTRACT The emergence of nosocomial infections by multidrug-resistant Staphylococcus haemolyticus isolates has been reported in several European countries. Here, we report the first two complete genome sequences of S. haemolyticus sequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2019 ◽  
Vol 8 (31) ◽  
Author(s):  
Baha Abdalhamid ◽  
Emily L. Mccutchen ◽  
Kacie D. Flaherty ◽  
Steven H. Hinrichs ◽  
Peter C. Iwen

Salmonella enterica serovar Dublin, which can cause enteritis and systemic infections in humans, has been associated with antimicrobial resistance. Here, we report draft genome sequences of seven multidrug-resistant S. Dublin isolates from human samples. These sequences will contribute to an understanding of pathogenesis and resistance determinants in this serovar.


2015 ◽  
Vol 60 (3) ◽  
pp. 1888-1891 ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian D. Johnston ◽  
Paul Thuras

Eravacycline is a novel broad-spectrum fluorocycline with potent Gram-negative activity, including for multidrug-resistant strains. Among 472Escherichia coliclinical isolates from 24 Veterans Affairs medical centers (in 2011), divided equally as susceptible versus resistant to fluoroquinolones, broth microdilution eravacycline MICs were distributed unimodally, ranging from 0.03 to 1.0 μg/ml (MIC50of 0.125 μg/ml, MIC90of 0.25 μg/ml). Eravacycline MICs were ∼2-fold higher among fluoroquinolone-resistant, gentamicin-resistant, multidrug-resistant, and sequence type 131 (ST131) isolates (P< 0.01 for each comparison).


2021 ◽  
Vol 10 (31) ◽  
Author(s):  
Amanda Chamieh ◽  
Rita Zgheib ◽  
Sabah El-Sawalhi ◽  
Eid Azar ◽  
Jean-Marc Rolain

We present the genome sequences of two carbapenemase-producing sequence type 405 Escherichia coli clinical isolates, strains Marseille-Q1950 and Marseille-Q1951. The isolates were obtained 1 month apart during the patient’s hospitalization in Lebanon, in May (Marseille-Q1950) and June (Marseille-Q1951) 2019. The genome sizes of strains Marseille-Q1950 and Marseille-Q1951 were 5,181,515 bp and 5,213,451 bp, respectively.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Yishan Yang ◽  
Christopher H. Sommers ◽  
Eyitayo O. Adenipekun ◽  
Marina Ceruso ◽  
Charlene R. Jackson ◽  
...  

Escherichia coli sequence type 131 (ST131) has recently emerged as a leading multidrug-resistant pathogen that causes urinary tract and bloodstream infections in humans. Here, we report the draft genomic sequences of three E. coli ST131 isolates, H45, H43ii, and H43iii, from urine samples of patients in Lagos, Nigeria.


2016 ◽  
Vol 60 (11) ◽  
pp. 6853-6858 ◽  
Author(s):  
Tatsuya Tada ◽  
Pham Hong Nhung ◽  
Tohru Miyoshi-Akiyama ◽  
Kayo Shimada ◽  
Mitsuhiro Tsuchiya ◽  
...  

ABSTRACTForty clinical isolates of multidrug-resistantPseudomonas aeruginosawere obtained in a medical setting in Hanoi, Vietnam. Whole genomes of all 40 isolates were sequenced by MiSeq (Illumina), and phylogenic trees were constructed from the single nucleotide polymorphism concatemers. Of these 40 isolates, 24 (60.0%) harbored metallo-β-lactamase-encoding genes, includingblaIMP-15,blaIMP-26,blaIMP-51, and/orblaNDM-1. Of these 24 isolates, 12 harboredblaIMP-26and belonged to sequence type 235 (ST235).Escherichia coliexpressingblaIMP-26was significantly more resistant to doripenem and meropenem thanE. coliexpressingblaIMP-1andblaIMP-15. IMP-26 showed higher catalytic activity against doripenem and meropenem than IMP-1 and against all carbapenems tested, including doripenem, imipenem, meropenem, and panipenem, than did IMP-15. These data suggest that clinical isolates of multidrug-resistant ST235P. aeruginosaproducing IMP-26 with increased carbapenem-hydrolyzing activities are spreading in medical settings in Vietnam.


2011 ◽  
Vol 55 (9) ◽  
pp. 4224-4229 ◽  
Author(s):  
Laurent Poirel ◽  
Rémy A. Bonnin ◽  
Patrice Nordmann

ABSTRACTThe resistome of the multidrug-resistantEscherichia colistrain 271 carrying the plasmid-mediatedblaNDM-1carbapenemase gene was analyzed by high-throughput genome sequencing. The p271A plasmid carrying theblaNDM-1gene was 35.9 kb in size and possessed an IncN-type backbone that harbored a novel replicase gene. Acquisition of theblaNDM-1gene on plasmid p271A had been likely the result of a cointegration event involving the transposase of Tn5403. The expression ofblaNDM-1was associated with the insertion sequence ISAba125likely originating fromAcinetobacter baumannii. E. coli271 accumulated multiple resistance determinants, including five β-lactamase genes (comprising the extended-spectrum β-lactamase CTX-M-15), two 16S RNA methylase ArmA- and RmtB-encoding genes, and theqepAgene encoding an efflux pump involved in resistance to fluoroquinolones. These resistance genes were located on three additional plasmids, of 160 kb (IncA/C), 130 kb (IncF), and 110 kb (IncI1). In addition, several chromosomally encoded resistance determinants were identified, such as topoisomerase mutations, porin modifications and truncations, and the intrinsicampCgene ofE. colithat was weakly expressed. The multidrug resistance pattern observed forE. coli271 was therefore the result of combined chromosome- and plasmid-encoded mechanisms.


Author(s):  
Priyanka Jain ◽  
Rajlakshmi Viswanathan ◽  
Gourab Halder ◽  
Sulagna Basu ◽  
Shanta Dutta

We report draft whole-genome sequences of two multidrug-resistant Salmonella enterica serovar Senftenberg sequence type 14 strains resistant to ciprofloxacin, ceftriaxone, and/or azithromycin, which were isolated from neonatal stool and goat meat in Kolkata, India. The genome characteristics, as well as the antimicrobial resistance genes, plasmid types, and integrons, are presented in this report.


Sign in / Sign up

Export Citation Format

Share Document