scholarly journals Research on the Energy Efficiency Indicators of Transport Diesel Engines under Transient Operation Conditions

Pomorstvo ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 228-238 ◽  
Author(s):  
Sergejus LebedevasPaulius ◽  
Paulius Rapalis ◽  
Rima Mickevicienė

In this study, we have investigated the efficiency of transport diesel engines CAT3512B-HD in transient braking and acceleration modes in 2M62M locomotives. A comparative analysis of the diesel engine performance has been performed at speeds of power increase and braking ranging from 4–5 kW/s to 17–18 kW/s. A decrease in the fuel economy occurred, and the main reason for it (compared with the steady-state operating condition at qcycl = idem) has been found to be the deterioration of the mechanical efficiency coefficient due to the loss of the additional equipment kinetic energy of the engine. The efficiency decreased by 3–3.5% under power increase operations and by 10–14% in the braking modes. The original methodology for the evaluation of the diesel engine parameters registered by the engine control units (ECU) in the engine operating conditions, mathematical modelling application AVL BOOST, and analytical summaries in artificial neural networks (ANNs) have been used. The errors in the obtained results have been 5–8% at a determination coefficient of 0.97–0.99.

Author(s):  
Kuo Yang ◽  
Pingen Chen

Abstract Modern Diesel engines have become highly complex multi-input multi-output systems. Controls of modern Diesel engines to meet various requirements such as high fuel efficiency and low NOx and particulate matter (PM) emissions, remain a great challenge for automotive control community. While model-based controls have demonstrated significant potentials in achieving high Diesel engine performance. Complete and high-fidelity control-oriented Diesel engine models are much needed as the foundations of model-based control system development. In this study, a semi-physical, mean-value control-oriented model of a turbocharged Diesel engine equipped with high-pressure exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) is developed and experimentally validated. The static calibration of Diesel engine model is achieved with the least-square optimization methodology using the experimental test data from a physical Diesel engine platform. The normalized root mean square errors (NRMSEs) of the calibration results are in the range of 0.1095 to 0.2582. The cross-validation results demonstrated that the model was capable of accurately capturing the engine torque output and NOx emissions with the control inputs of EGR, VGT and Start of Injection timing (SOI) in wide-range operating conditions.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
B. B. Sahoo ◽  
U. K. Saha ◽  
N. Sahoo ◽  
P. Prusty

The fuel efficiency of a modern diesel engine has decreased due to the recent revisions to emission standards. For an engine fuel economy, the engine speed is to be optimum for an exact throttle opening (TO) position. This work presents an analysis of throttle opening variation impact on a multi-cylinder, direct injection diesel engine with the aid of Second Law of thermodynamics. For this purpose, the engine is run for different throttle openings with several load and speed variations. At a steady engine loading condition, variation in the throttle openings has resulted in different engine speeds. The Second Law analysis, also called ‘Exergy’ analysis, is performed for these different engine speeds at their throttle positions. The Second Law analysis includes brake work, coolant heat transfer, exhaust losses, exergy efficiency, and airfuel ratio. The availability analysis is performed for 70%, 80%, and 90% loads of engine maximum power condition with 50%, 75%, and 100% TO variations. The data are recorded using a computerized engine test unit. Results indicate that the optimum engine operating conditions for 70%, 80% and 90% engine loads are 2000 rpm at 50% TO, 2300 rpm at 75% TO and 3250 rpm at 100% TO respectively.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1612
Author(s):  
Federico Millo ◽  
Andrea Piano ◽  
Benedetta Peiretti Paradisi ◽  
Mario Rocco Marzano ◽  
Andrea Bianco ◽  
...  

In this paper, an integrated and automated methodology for the coupling between 1D- and 3D-CFD simulation codes is presented, which has been developed to support the design and calibration of new diesel engines. The aim of the proposed methodology is to couple 1D engine models, which may be available in the early stage engine development phases, with 3D predictive combustion simulations, in order to obtain reliable estimates of engine performance and emissions for newly designed automotive diesel engines. The coupling procedure features simulations performed in 1D-CFD by means of GT-SUITE and in 3D-CFD by means of Converge, executed within a specifically designed calculation methodology. An assessment of the coupling procedure has been performed by comparing its results with experimental data acquired on an automotive diesel engine, considering different working points, including both part load and full load conditions. Different multiple injection schedules have been evaluated for part-load operation, including pre and post injections. The proposed methodology, featuring detailed 3D chemistry modeling, was proven to be capable assessing pollutant formation properly, specifically to estimate NOx concentrations. Soot formation trends were also well-matched for most of the explored working points. The proposed procedure can therefore be considered as a suitable methodology to support the design and calibration of new diesel engines, due to its ability to provide reliable engine performance and emissions estimations from the early stage of a new engine development.


Author(s):  
Junfeng Yang ◽  
Monica Johansson ◽  
Valeri Golovitchev

A comparative study on engine performance and emissions (NOx, soot) formation has been carried out for the Volvo D12C diesel engine fueled by Rapeseed Methyl Ester, RME and conventional diesel oil. The combustion models, used in this paper, are the modifications of those described in [1–2]. After the compilation of liquid properties of RME specified as methyl oleate, C19H36O2, making up 60% of RME. The oxidation mechanism has been compiled based on methyl butanoate ester, mb, C5H10O2 oxidation model [3] supplemented by the sub-mechanisms for two proposed fuel constituent components, methyl decanoate, md, C11H22O2, n-heptane, C7H16, and soot and NOx formations reduced and “tuned” by using the sensitivity analysis. A special global reaction was introduced to “crack” the main fuel into constituent components, md, mb and propyne, C3H4, to reproduce accurately the proposed RME chemical formula. The sub-mechanisms were collected in the general one consisting of 99 species participating in 411 reactions. The combustion mechanism was validated using shock-tube ignition-delay data at diesel engine conditions and flame propagation speeds at atmospheric conditions. The engine simulations were carried out for Volvo D12C engine fueled both RME and conventional diesel oil. The numerical results illustrate that in the case of RME, nearly 100% combustion efficiency was predicted when the cumulative heat release, was compared with the RME LHV, 37.2 kJ/g.. To minimize NOx emissions, the effects of 20–30% EGR levels depending on the engine loads and different injection strategies were analyses. To confirm the optimal engine operation conditions, a special technique based on the time-transient parametric φ-T maps [4] has been used.


Author(s):  
C A Finol ◽  
K Robinson

Existing methods for predicting heat fluxes and temperatures in internal combustion engines, which take the form of correlations to estimate the heat transfer coefficient on the gas-side of the combustion chamber, are based on methodology developed over the past 50 years, often updated in view of more recent experimental data. The application of these methods to modern diesels engines is questionable because key technologies found in current engines did not exist or were not widely used when those methods were developed. Examples of such technologies include: high-pressure common rail and variable fuel injection strategies including retarded injection for nitrogen oxides emission control; exhaust gas re-circulation; high levels of intake boost pressure provided by a single- or double-stage turbocharger and inter-cooling; multiple valves per cylinder and lower swirl; and advanced engine management systems. This suggests a need for improved predicting tools of thermal conditions, specifically temperature and heat flux profiles in the engine block and cylinder head. In this paper a modified correlation to predict the gas-side heat transfer coefficient in diesel engines is presented. The equation proposed is a simple relationship between Nu and Re calibrated to predict the instantaneous spatially averaged heat transfer coefficient at several operating conditions using air as gas in the model. It was derived from the analysis of experimental data obtained in a modern diesel engine and is supported by a research methodology comprising the application of thermodynamic principles and fundamental equations of heat transfer. The results showed that the new correlation adequately predicted the instantaneous coefficient throughout the operating cycle of a high-speed diesel engine. It also estimated the corresponding cycle-averaged heat transfer coefficient within 10 per cent of the experimental value for the operating conditions considered in the analysis.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Kyunghan Min ◽  
Haksu Kim ◽  
Manbae Han ◽  
Myoungho Sunwoo

Modern diesel engines equip the exhaust gas recirculation (EGR) system because it can suppress NOx emissions effectively. However, since a large amount of exhaust gas might cause the degradation of drivability, the control strategy of EGR system is crucial. The conventional control structure of the EGR system uses the mass air flow (MAF) as a control indicator, and its set-point is determined from the well-calibrated look-up table (LUT). However, this control structure cannot guarantee the optimal engine performance during acceleration operating conditions because the MAF set-point is calibrated at steady operating conditions. In order to optimize the engine performance with regard to NOx emission and drivability, an optimization algorithm in a function of the intake oxygen fraction (IOF) is proposed because the IOF directly affects the combustion and engine emissions. Using the NOx and drivability models, the cost function for the performance optimization is designed and the optimal value of the IOF is determined. Then, the MAF set-point is adjusted to trace the optimal IOF under engine acceleration conditions. The proposed algorithm is validated through scheduled engine speeds and loads to simulate the extra-urban driving cycle of the European driving cycle. As validation results, the MAF is controlled to trace the optimal IOF from the optimization method. Consequently, the NOx emission is substantially reduced during acceleration operating conditions without the degradation of drivability.


Author(s):  
Ali M. A. Attia ◽  
Ahmed I. El-Seesy ◽  
Hesham M. El-Batsh ◽  
Mohamed S. Shehata

Currently, using biofuels to operate diesel engines gets a great attention to the extent that it could replace the limited conventional fossil fuels. These fuels have a closed life cycle (renewable) and they have a remarkable effect on the global greenhouse phenomena. Moreover, the use of non-edible vegetable oils is considered a good choice after a suitable chemical and/or thermal treatment to convert them into esters. The use of jojoba oil shows a promising alternative fuel for conventional diesel fuel even there were unfavorable effects including power reduction. The wide spread usage of nano additives to improve the combustion quality may be a good solution for these problems. This study represents an experimental investigation to examine the effect of nano additives on diesel engine performance at variable operating conditions of load and speed. In this work, alumina nano-particles are added to a mixture of jojoba methyl ester (biodiesel) and conventional diesel fuel at the most recommended value (20% biodiesel and 80% diesel fuel) with different doses from 10 up to 50 mg/l. The received mixture is homogenized with an ultrasonicator mixer. It is found that, the appropriate nano-additives dose corresponding to optimal engine performance is about 30 mg/l. At this dose, the overall BSFC is reduced by about 6%, engine thermal efficiency is increased up to 7%, and all engine emissions have been reduced (NOx about 70%, CO about 75 %, smoke opacity about 5%, and UHC about 55 %) compared with the corresponding values obtained when only a blended fuel of 20% biodiesel is used.


Author(s):  
Alfian Firdiansyah ◽  
Nasrul Ilminnafik ◽  
Agus Triono ◽  
Muh Nurkoyim Kustanto

<p class="02abstracttext"><span lang="IN">A small diesel engine is a machine that has high efficiency but causes a high level of pollution. The most widely used fuel so far is fossil energy which is unrenewable energy. The fruit of the Calophyllum inophyllum plant has great potential to be developed as alternative energy for small diesel engines. In this study, the test fuel used was D100, B100, E5, E10, and E15. The small engine diesel used TG-R180 Diesel with a compression ratio of 20:1 at engine turns 1500, 1800, 2100, and 2400 rpm, and the braking load at a constant prony disc brake is 1,5 kg/cm<sup>2</sup>. The result of the study using E10 fuel can improve engine performance and can reduce the opacity of the exhaust gas. The highest power in the D100 fuel at 2100 rpm is 8,06 PS. The highest thermal efficiency of E10 fuel is 50,29%. The use of Calophyllum inophyllum biodiesel (B100) can reduce exhaust gas opacity in small diesel engines when compared to the use of D100. E10 fuel has the lowest exhaust gas opacity rate of 4,1%.</span></p>


Sign in / Sign up

Export Citation Format

Share Document