scholarly journals Consistent risk management in a changing world: risk equivalence in fisheries and other human activities affecting marine resources and ecosystems

2021 ◽  
Author(s):  
Marie-Julie Roux ◽  
Daniel Duplisea ◽  
Karen L. Hunter ◽  
Jake Rice

This manuscript addresses the need to account for climate change in the management of human activities affecting marine resources and ecosystems. A changing climate makes the evaluation of human impacts on natural systems increasingly uncertain, and affects the risks associated with management decisions. A flexible approach is proposed that involves routine formulation of alternative hypotheses for climate effects and exploration of risk equivalent management options that allow human activities to continue within acceptable risk levels despite shifting or novel conditions. The approach fits within existing risk frameworks and is applicable in all data and knowledge situations where management objectives are specified. Risk equivalence can be achieved either by conditioning the exposure to human pressures on demonstrated, anticipated or projected environmental change, or by conditioning the objectives themselves on a new environmental reality. We exemplify risk equivalence in fisheries management and discuss its applicability to the management of other human activities. Concepts of risk and risk conditioning factors provide a common language and understanding for the inclusion and communication of environmental considerations in management advice. The approach can guide robust and accountable decision-making in a changing world, and facilitate the implementation of ecosystem-based management.

2022 ◽  
Vol 3 ◽  
Author(s):  
Marie-Julie Roux ◽  
Daniel E. Duplisea ◽  
Karen L. Hunter ◽  
Jake Rice

A changing climate makes the evaluation of human impacts on natural systems increasingly uncertain and affects the risk associated with management decisions. This influences both the achievability and meaning of marine conservation and resource management objectives. A risk-based framework that includes a risk equivalence approach in the evaluation of the potential consequences from human activity, can be a powerful tool for timely and consistent handling of environmental considerations in management advice. Risk equivalence permits a formal treatment of all sources of uncertainty, such that objectives-based management decisions can be maintained within acceptable risk levels and deliver outcomes consistent with expectations. There are two pathways to risk equivalence that can be used to account for the short-term and longer-term impacts of a changing environment: adjusting the degree of exposure to human pressure and adjusting the reference levels used to measure the risk. The first uses existing data and knowledge to derive risk conditioning factors applied to condition management advice on environmental departures from baseline conditions. The second is used to formalise the review and update of management objectives, reference levels and risk tolerances, so they remain consistent with potential consequences from human activity under new biological, ecological and socio-economic realities. A risk equivalence approach is about adapting existing practice to frame environmental considerations within objectives-based risk frameworks, systematically exploring alternative scenarios and assumptions, and conditioning management advice on environmental status. It is applicable to the management of all human activities impacting biological and ecological systems. Concepts of risk, risk conditioning factors, and incremental changes in risk, provide a common currency for the inclusion and communication of environmental effects into advice. Risk equivalence can ensure timely delivery of robust management advice accounting for demonstrated, anticipated or projected environmental effects. This can guide management decisions in a changing world, and greatly facilitate the implementation of an ecosystem approach for the management of human activities.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Mikhail Chester ◽  
B. Shane Underwood ◽  
Braden Allenby ◽  
Margaret Garcia ◽  
Constantine Samaras ◽  
...  

AbstractInfrastructure are at the center of three trends: accelerating human activities, increasing uncertainty in social, technological, and climatological factors, and increasing complexity of the systems themselves and environments in which they operate. Resilience theory can help infrastructure managers navigate increasing complexity. Engineering framings of resilience will need to evolve beyond robustness to consider adaptation and transformation, and the ability to handle surprise. Agility and flexibility in both physical assets and governance will need to be emphasized, and sensemaking capabilities will need to be reoriented. Transforming infrastructure is necessary to ensuring that core systems keep pace with a changing world.


2021 ◽  
Author(s):  
Marcus Reckermann ◽  
Anders Omstedt ◽  
Tarmo Soomere ◽  
Juris Aigars ◽  
Naveed Akhtar ◽  
...  

Abstract. Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are stongly affected by human activities. A multitude of human impacts, including climate change, affects the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. We conclude that a sound management and regulation of human activities must be implemented in order to use and keep the environments and ecosystems of the Baltic Sea region sustainably in a good shape. This must balance the human needs, which exert tremendous pressures on the systems, as humans are the overwhelming driving force for almost all changes we see. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world.


2020 ◽  
Author(s):  
Kiva L. Oken ◽  
André E Punt ◽  
Daniel S. Holland

Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users can earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human-natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model characterized by the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on revenue patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with longer-lived groundfish populations was not important because environmentally-driven changes in groundfish early life survival were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of extremely poor environmental conditions over short time scales, though not for long-term declines. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a tradeoff between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.


2018 ◽  
Author(s):  
SeaPlan

Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Massachusetts.For this study, regional ecosystem experts were surveyed to gauge the relative vulnerability of marine ecosystems to current and emerging anthropogenic stressors. Survey results were then combined with spatial information on the distribution of marine ecosystems and human stressors to map cumulative impacts in Massachusetts waters.The study resulted in an ecosystem vulnerability matrix and human impacts maps, which together yield insights into which ecosystems and places are most vulnerable and which human uses, alone and in combination, are putting the most stress on marine ecosystems. These products can be used in a number of ways, including to help clarify ocean planning decisions, identify areas of potential conflict among ocean users and areas that may merit conservation, and assess ecological, economic and social values of particular places.


Author(s):  
Thomas K. Budge ◽  
Arian Pregenzer

As biodiversity, ecosystem function, and ecosystem services become more closely linked with human well-being at all scales, the study of ecology takes on increasing social, economic, and political importance. However, when compared with other disciplines long linked with human well-being, such as medicine, chemistry, and physics, the technical tools and instruments of the ecologist have generally lagged behind those of the others. This disparity is beginning to be overcome with the increasing use of biotelemetric techniques, microtechnologies, satellite and airborne imagery, geographic information systems (GIS), and both regional and global data networks. We believe that the value and efficiency of ecosystem studies can advance significantly with more widespread use of existing technologies, and with the adaptation of technologies currently used in other disciplines to ecosystem studies. More importantly, the broader use of these technologies is critical for contributing to the preservation of biodiversity and the development of sustainable natural resource use by humans. The concept of human management of biodiversity and natural systems is a contentious one. However, we assert that as human population and resource consumption continue to increase, biodiversity and resource sustainability will only be preserved by increasing management efforts—if not of the biodiversity and resources themselves, then of human impacts on them. The technologies described in this chapter will help enable better management efforts. In this context, biodiversity refers not only to numbers of species (i.e., richness) in an arbitrarily defined area, but also to species abundances within that area. Sustainability refers to the maintenance of natural systems, biodiversity, and resources for the benefit of future generations. Arid-land grazing systems support human social systems and economies in regions all over the world, and can be expected to play increasingly critical roles as human populations increase. Further, grazing systems represent a nexus of natural and domesticated systems. In these systems, native biodiversity exists side by side with introduced species and populations, and in fact can benefit from them.


2020 ◽  
Vol 8 (9) ◽  
pp. 686
Author(s):  
Marco Pellegrini ◽  
Giovanni Preda ◽  
Cesare Saccani

The realization of infrastructures in coastal environment modifies water and sediment natural current regime. In particular, sediment can be entrained and accumulated in port infrastructure like docks, haling basins, or port entrances and channels, creating problems for navigation and limiting the human activities. The result is that marine basins and approaches are frequently silted and require maintenance dredging. Dredging is a consolidated and proven technology which implies relevant drawbacks, like high environmental impact on marine flora and fauna, mobility and diffusion of contaminants, and pollutants already present on the seabed, limitations to navigation, relatively high and low predictable costs. Starting from 2001 an innovative plant for sediment management, alternative to maintenance dredging, has been developed and tested. The core of the plant is the “ejector”, an open jet pump fed by pressurized water that is able to suck and convey in a pipeline the sediment that may accumulate in a certain area. On August 2018, a pilot plant has been installed in the haling basin of Cattolica (Italy), as part of a pilot initiative included in the Interreg-Med project “Promoting the co-evolution of human activities and natural systems for the development of sustainable coastal and maritime tourism” (CO-EVOLVE). The aim of the specific experimental activity was to test and monitor the efficacy of the technology applied in a port channel and working with sediments like silt and clay instead of sand. The paper shows the results of the monitoring campaign carried out by the University of Bologna from August 2018 to July 2019.


2002 ◽  
Vol 45 (11) ◽  
pp. 35-44 ◽  
Author(s):  
S.K. Hamilton

Inundation patterns in the Pantanal remain in a relatively natural state, yet a number of significant human influences have occurred in the past, and there is potential for more severe human impacts as development of the region continues in the future. The objectives of this paper are 1) to briefly review the linkages between hydrology and ecological structure and function in the Pantanal; 2) to review some documented cases of historical influences of human activities on hydrology in the region; and 3) to consider potential future impacts, particularly in regard to the recently proposed navigation project known as the Paraguay-Paraná Waterway (or Hidrovía).


1997 ◽  
Vol 9 (3) ◽  
pp. 235-242 ◽  
Author(s):  
David J. Agnew

The Convention on the Conservation of Antarctic Marine Living Resources states as part of its objective the maintenance of ecological relationships and the prevention of irreversible changes to the ecosystem. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has implemented an Ecosystem Monitoring Programme (CEMP) for the Antarctic marine environment to give effect to this requirement. The design phase of the programme took three years. The programme has been fully implemented since 1987 and involves monitoring selected predator, prey and environmental indicators of ecosystem performance. The central aim of the programme is the detection of changes in these indicators and the interpretation as to whether these changes are due to natural events or the harvesting of marine living resources. The core of the programme is the acquisition, centralised storage and analysis of standardised monitoring data combined with a strong emphasis on empirical and modelling based research. This both modifies the monitoring approach in line with changing requirements and creates a sound scientific background against which to test the effects of management options on components of the Antarctic ecosystem. The development of procedures for translating monitoring results into management advice is a critical part of the programme. Management takes the form of the regulation of fishing activities. Since 1987 CEMP has collected data on six bird and seal species at 15 sites around the Antarctic. Up to 14 parameters of predator performance and 10 parameters of prey and environmental performance are collected at each site. The data sets collected by CEMP form an extremely powerful tool for understanding and managing the Antarctic marine ecosystem.


Sign in / Sign up

Export Citation Format

Share Document