scholarly journals Three-dimensional fluid-driven stable frictional ruptures

2021 ◽  
Author(s):  
Alexis Sáez ◽  
Brice Lecampion ◽  
Pathikrit Bhattacharya ◽  
Robert Viesca

We investigate the quasi-static growth of a fluid-driven frictional shear crack that propagates in mixed mode (II+III) on a planar fault interface that separates two identical half-spaces of a three-dimensional solid. The fault interface is characterized by a shear strength equal to the product of a constant friction coefficient and the local effective normal stress. Fluid is injected into the fault interface and two different injection scenarios are considered: injection at constant volume rate and injection at constant pressure. We derive analytical solutions for circular ruptures which occur in the limit of a Poisson's ratio ν=0 and solve numerically for the more general case in which the rupture shape is unknown (ν≠0). For an injection at constant volume rate, the fault slip growth is self-similar. The rupture radius (ν=0) expands as R(t)=λL(t), where L(t) is the nominal position of the fluid pressure front and λ is an amplification factor that is a known function of a unique dimensionless parameter T. The latter is defined as the ratio between the distance to failure under ambient conditions and the strength of the injection. Whenever λ>1, the rupture front outpaces the fluid pressure front. For ν≠0, the rupture shape is quasi-elliptical. The aspect ratio is upper and lower bounded by 1/(1-ν) and (3-ν)/(3-2ν), for the limiting cases of critically stressed faults (λ≫1, T≪1) and marginally pressurized faults (λ≪1, T≫1), respectively. Moreover, the evolution of the rupture area is independent of the Poisson's ratio and grows simply as Aᵣ(t)=4παλ²t, where α is the fault hydraulic diffusivity. For injection at constant pressure, the fault slip growth is not self-similar: the rupture front evolves at large times as ∝(αt)⁽¹⁻ᵀ⁾ᐟ² with T between 0 and 1. The frictional rupture moves at most diffusively (∝√(αt)) when the fault is critically stressed, but in general propagates slower than the fluid pressure front. Yet in some conditions, the rupture front outpaces the fluid pressure front. The latter will eventually catch the former if injection is sustained for a sufficient time. Our findings provide a basic understanding on how stable (aseismic) ruptures propagate in response to fluid injection in 3-D. Notably, since aseismic ruptures driven by injection at constant rate expands proportionally to the squared root of time, seismicity clouds that are commonly interpreted to be controlled by the direct effect of fluid pressure increase might be controlled by the stress transfer of a propagating aseismic rupture instead. We also demonstrate that the aseismic moment M₀ scales to the injected fluid volume V as M₀ ∝ V³ᐟ².

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2193 ◽  
Author(s):  
Krzysztof K. Dudek ◽  
Daphne Attard ◽  
Ruben Gatt ◽  
James N. Grima-Cornish ◽  
Joseph N. Grima

In this work, through the use of a theoretical model, we analyse the potential of a specific three-dimensional mechanical metamaterial composed of arrowhead-like structural units to exhibit a negative Poisson’s ratio for an arbitrary loading direction. Said analysis allows us to assess its suitability for use in applications where materials must be able to respond in a desired manner to a stimulus applied in multiple directions. As a result of our studies, we show that the analysed system is capable of exhibiting auxetic behaviour for a broad range of loading directions, with isotropic behaviour being shown in some planes. In addition to that, we show that there are also certain loading directions in which the system manifests negative linear compressibility. This enhances its versatility and suitability for a number of applications where materials exhibiting auxetic behaviour or negative linear compressibility are normally implemented.


2020 ◽  
Vol 8 (44) ◽  
pp. 15771-15777
Author(s):  
Kashif Hussain ◽  
Umer Younis ◽  
Imran Muhammad ◽  
Yu Qie ◽  
Yaguang Guo ◽  
...  

Motivated by the recent synthesis of three-dimensional (3D) porous borocarbonitride (Angew. Chem., Int. Ed., 2019, 58, 6033–6037), we propose a porous 3D-BC2N structure composed of BC2N nanoribbons.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 617-630
Author(s):  
Kun Luan ◽  
Andre West ◽  
Emiel DenHartog ◽  
Marian McCord

Negative Poisson’s ratio (NPR) material with unique geometry is rare in nature and has an auxetic response under strain in a specific direction. With this unique property, this type of material is significantly promising in many specific application fields. The curling structure commonly exists in knitted products due to the unbalanced force inside a knit loop. Thus, knitted fabric is an ideal candidate to mimic natural NPR materials, since it possesses such an inherent curly configuration and the flexibility to design and process. In this work, a weft-knitted Miura-ori fold (WMF) fabric was produced that creates a self-folding three-dimensional structure with NPR performance. Also, a finite element analysis model was developed to simulate the structural auxetic response to understand the deformation mechanism of hierarchical thread-based auxetic fabrics. The simulated strain–force curves of four WMF fabrics quantitatively agree with our experimental results. The auxetic morphologies, Poisson’s ratio and damping capacity were discussed, revealing the deformation mechanism of the WMF fabrics. This study thus provides a fundamental framework for mechanical-stimulating textiles. The developed NPR knitted fabrics have a high potential to be employed in areas of tissue engineering, such as artificial blood vessels and artificial folding mucosa.


Recent results of theoretical and practical importance prove that the two-dimensional (in-plane) effective (average) Young’s modulus for an isotropic elastic material containing voids is independent of the Poisson’s ratio of the matrix material. This result is true regardless of the shape and morphology of the voids so long as isotropy is maintained. The present work uses this proof to obtain explicit analytical forms for the effective Young’s modulus property, forms which simplify greatly because of this characteristic. In some cases, the optimal morphology for the voids can be identified, giving the shapes of the voids, at fixed volume, that maximize the effective Young’s modulus in the two-dimensional situation. Recognizing that two-dimensional isotropy is a subset of three-dimensional transversely isotropic media, it is shown in this more general case that three of the five properties are independent of Poisson’s ratio, leaving only two that depend upon it. For three-dimensionally isotropic composite media containing voids, it is shown that a somewhat comparable situation exists whereby the three-dimensional Young’s modulus is insensitive to variations in Poisson’s ratio, v m , over the range 0 ≤ v m ≤ ½, although the same is not true for negative values of v m . This further extends the practical usefulness of the two-dimensional result to three-dimensional conditions for realistic values of v m .


2016 ◽  
Vol 25 (5) ◽  
pp. 054005 ◽  
Author(s):  
Chan Soo Ha ◽  
Michael E Plesha ◽  
Roderic S Lakes

Author(s):  
ChunYan Wang ◽  
SongChun Zou ◽  
WanZhong Zhao

The crash box can absorb energy from the beam as much as possible, so as to reduce the collision damage to the front part of the car body and protect the safety of passengers. This work proposes a novel crash box filled with a three-dimensional negative Poisson’s ratio (NPR) inner core based on an inner hexagonal cellular structure. In order to optimize and improve the crash box’s energy absorption performance, the multi-objective optimization model of the NPR crash box is established, which combines the optimal Latin hypercube design method and response surface methodology. Then, the microstructure parameters are further optimized by the multi-objective particle swarm optimization algorithm to obtain an excellent energy absorption effect. The simulation results show that the proposed NPR crash box can generate smooth and controllable deformation to absorb the total energy, and it can further enhance the crashworthiness through the designed optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document