scholarly journals Optimization of reinforcing steel with genetic algorithms for the design of concrete columns

2021 ◽  
Author(s):  
Luis Fernando Verduzco

Is presented hereby the creation of an optimization program for the design of reinforcing steel for any type of structural elements which may be considered as columns, pillar, pilots or dies, subjected to flexo-compression mechanic stresses for rectangular cross sections elements with the support of numeric methods and meta-heuristic algorithms for the optimization of constructions costs, particularly the Genetic algorithm, adapting such algorithms to the optimization problem so that it makes the resultant designs practical and convenient for its application in the construction industry, based on certain criteria from NTC-17 and questioning other. It will be shown how such optimization algorithm was adapted to the problem, as well as other general numeric methods for engineering and others developed specifically for structural engineering for the optimal design of this sort of concrete elements. Moreover, sensibility cost analysis of unitary construction prices are presented as well, with which the objective function for the optimization algorithm was created. At the end, results of various experiments with and without the optimization program are shown, making comparisons between different structural models regarding cost and geometry.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


2012 ◽  
Vol 195-196 ◽  
pp. 297-302 ◽  
Author(s):  
Wei Feng Zhao ◽  
Jing Zhou ◽  
Guo Bin Bu

Bamboo is mainly a tropical and subtropical plant which is found adequate in many countries. The strength of bamboo as concrete reinforcement is much lower than steel bar reinforcement. However, one of the merits is a cheap and replenishable agricultural resource and abundantly available. Due to excellent properties like high strength to weight ratio, high tensile strength and free-cutting and processing, bamboo as a potential reinforcement material in place of steel is widely available in concrete structural elements. The present paper introduces some of the existing studies and application technology of bamboo reinforced concrete elements in building structures, such as bamboo reinforced concrete columns, beams, slabs and walls.


2018 ◽  
Vol 931 ◽  
pp. 321-327
Author(s):  
Viktor A. Muradyan

The article deals with the main advantages of reinforced concrete columns with recessed fittings. The method of testing the prototype columns is described. In addition, the influence of various factors on the fracture pattern and bearing capacity of such columns is explained. The standard reinforced concrete columns are given below and the optimal parameters for saving reinforcing steel are observed [1-7].


2019 ◽  
Vol 7 (2) ◽  
pp. 79-103
Author(s):  
Sri Nuryati ◽  
Sigit Suwanto

The collapse of a column causes the collapse of the entire building that need a large cost for repairing. Therefore, special attention is needed when planning the columns, i.e. by providing a backup strength on columns which greater than other beams and other horizontal structural elements since there is no initial warning in a press-type of collapse. This study aims to determine the efficiency of square concrete column dimensions in case of column calculations after the revision of PBI 1971 to SNI 1991 standard both by manual calculation and using the Turbo Pascal-based application. Calculation utilized the elastic method and ultimate method with the assumption that column conditions are similar as well as the column data is taken from the calculation of reinforced portal structures. Concrete columns are made rectangle with dimensions of size 35 x 35 cm and size 75 x 75 cm, concrete quality K 225, steel quality U24 (2400 kg / cm²), modulus of steel elasticity 2.1. 10⁶ kg / cm² and 5 cm thick of concrete blanket, with the assumption that structural analysis has been conducted for calculating the boundary and moment loads, assuming that the column conditions are similar. In case of the ability to retain the load and moment by the column, assuming the constant area of ​​reinforcement in various dimensions, the results of the elastic method (PBI 1071) were smaller than the ultimate method (SK SNI 1991). The calculation results showed that the ultimate method was more efficient than the elastic method in terms of the efficiency of reinforcing steel use.


2018 ◽  
Vol 26 (4) ◽  
pp. 39-49
Author(s):  
Alfred Strauss ◽  
Thomas Zimmermann ◽  
Panagiotis Spyridis ◽  
Benjamin Täubling

Abstract The European standard for the design of concrete structures using nonlinear methods contains a deficit in global reliability for cases when concrete columns fail due to a loss of stability before reaching the design resistance in the critical cross-sections. A buckling failure is a brittle failure which occurs without warning, and the probability of its formation is markedly influenced by the slenderness of the column. The calculation results presented herein are compared with the results from experimental data. The paper aims to compare the global reliability of slender concrete columns with a slenderness of 90 and higher. The columns are designed according to the methods stated in EN 1992-1-1, namely, a general nonlinear method and methods based on nominal stiffness and nominal curvature. The mentioned experiments also served, on the one hand, as a basis for the deterministic nonlinear modeling of the columns and, subsequently, for the probabilistic evaluation of the variability of the structural response. Finally, the results may be utilized as thresholds for the loading of the structural elements produced. The paper aims at presenting a probabilistic design that is less conservative than the classic partial safety factor-based design and alternative ECOV method.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  

The purpose of this paper is to raise construction industry awareness regarding structural grouting of precast concrete projects in the United States. Incidents related to structural grouting have occurred with both precast concrete systems and other building systems. Designers, architects, owners, insurance carriers, and the construction industry in general are becoming increasingly aware of deficient grouting installation methods and verification procedures. Concerns include the timeliness of grout installation during the erection process, the lack of grout on some components of finished projects, and the poor quality of installed grout. These concerns pertain to horizontal connection joints of critical load-bearing elements between foundations and precast concrete columns and walls, stacked precast concrete columns, and stacked precast concrete walls. Current building codes and standards provide no requirements and limited guidance for the installation or special inspection of these critical horizontal joints. In an effort to address this gap in building codes and standards, as it specifically relates to precast concrete structural products, some precast concrete producers and erectors are implementing several strategies and new procedures, as noted and further developed in this paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Richard Oduro Asamoah ◽  
John Solomon Ankrah ◽  
Kofi Offei-Nyako ◽  
Ernest Osei Tutu

The construction industry in Ghana is becoming efficient in the area of cost and achieving advance technologies. The effective management of cost enables clients, developers, and facilitators to achieve value for money. Concrete is a major component in every construction project. The use of precast concrete technology has been embraced by the construction industry in Ghana. This study seeks to analyze cost estimating of the structural frame (column and slab) by considering cast-in-place and precast concrete slabs and columns, respectively. Relative importance and Kendall’s concordance agreement were used to determine the rankings and agreement of advantages of using precast concrete. The study established that precast concrete slabs were on average 23.22% cheaper than the cast-in-place concrete elements and precast columns were averagely 21.4% less than cast-in-place concrete columns. The study established that professionals prefer the use of precast concrete products because of the life cycle cost.


Author(s):  
Sergey ZENIN ◽  
Ravil SHARIPOV ◽  
Олег КУДИНОВ

Research work was carried out at NIIZHB named after A.A. Gvozdev, one of the tasks of which was to study the influence of the conditions for stiff fixing supports on the parameters of the effective lengths of reinforced concrete columns with square and rectangular cross-sections assigned when calculating the strength of normal sections. As part of the study, the influence of different values and directions of the angles of rotation of the fixing and their displacements was evaluated. The conducted computational and theoretical studies based on the analysis of experimental data showed that the method of determining the effective lengths, adopted in domestic standards, can be improved. Based on the results of the research, proposals were formulated to take the results of the work into account in the current regulatory framework. Taking into account the peculiarities of the conditions for fixing the structures considered in the work, which correspond to the nature of the work of monolithic columns and pylons, it is recommended to include the provisions of the proposed methodology in SP 430.1325800.2018, which applies to monolithic structural systems of buildings. The prepared proposals for the calculation are supposed to be included in the current regulatory documents as one of the possible options for determining the effective length of non-centrally compressed elements when calculating their strength.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Sign in / Sign up

Export Citation Format

Share Document