Application Technology of Bamboo Reinforced Concrete in Building Structure

2012 ◽  
Vol 195-196 ◽  
pp. 297-302 ◽  
Author(s):  
Wei Feng Zhao ◽  
Jing Zhou ◽  
Guo Bin Bu

Bamboo is mainly a tropical and subtropical plant which is found adequate in many countries. The strength of bamboo as concrete reinforcement is much lower than steel bar reinforcement. However, one of the merits is a cheap and replenishable agricultural resource and abundantly available. Due to excellent properties like high strength to weight ratio, high tensile strength and free-cutting and processing, bamboo as a potential reinforcement material in place of steel is widely available in concrete structural elements. The present paper introduces some of the existing studies and application technology of bamboo reinforced concrete elements in building structures, such as bamboo reinforced concrete columns, beams, slabs and walls.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


2011 ◽  
Vol 287-290 ◽  
pp. 703-707
Author(s):  
Yan Han ◽  
Hong Cheng Guan ◽  
Zhen Li

Through experimental study on three HRB400 steel bar reinforced concrete columns subjected to low cyclic reversed loading, the failure patterns, hysteretic curves and skeleton curves were obtained. The influence of longitudinal high-strength reinforcement ratio upon the hysteretic characteristics, ductile behavior and ability of energy dissipation were analyzed. The results show that the main failure pattern was bending failure; and with the increscent of the longitudinal high-strength reinforcing steel bar ratio, the columns can endure larger seismic loads and displacement; the seismic performance of the whole reinforced concrete columns can be effectively improved by arranging reasonable high-strength steel bars.


Author(s):  
R. Chmielewski ◽  
A. Baryłka ◽  
J. Obolewicz

Purpose: The article present issues related to strengthening the supporting structure of swimming pool in a primary school building paying special attention to the damaged reinforced concrete pillars of supports. Design/methodology/approach: Analysis of design solutions strengthening the supporting structure of the building for further safe use. Findings: Engineers noticed multiple cracks and deformations in rebar while performing on-site verification. Three posts (pillars) were damaged in the basement rooms and needed repair. Research limitations/implications: Structural elements of building structures wear out over time and cause damage that requires repair. The scope of repair works should be designed and carried out in accordance with applicable law. Practical implications: The solution, which has been designed in great detail, allows the building to continue working without the risk of damaging the structure. Originality/value: Due to the scale of damage to the reinforced concrete columns in the basement of the building, it was necessary to protect the facility against a construction failure.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


Author(s):  
Ehab El-Salakawy ◽  
Fangxin Ye ◽  
Yasser Mostafa Selmy

Composite materials like glass fiber-reinforced polymer (GFRP) is becoming widely acceptable to be used as a reinforcing material due to its high ultimate tensile strength-to-weight ratio and excellent resistance to corrosion. However, the seismic behavior of GFRP-reinforced concrete columns has not been fully investigated yet. This paper presents the results of a numerical analysis of full-size GFRP-RC rectangular columns under cyclic loading. The simulated column depicts the lower part of a building column between the foundation and the point of contra-flexure at the mid-height of the column. GFRP reinforcement properties and concrete modeling based on fracture energy have been incorporated in the numerical model. Experimental validation has been used to examine the accuracy of the constructed finite element models (FEMs) using a commercially available software. The validated FEM was used to perform a parametric study, considering several concrete strength values and axial load levels, to study its influence on the performance of the GFRP-reinforced concrete columns under cyclic loading. It was concluded that the hysteretic dissipation capacity deteriorates under high axial load level due to severe softening of the concrete. The FE results showed a substantial improvement of the lateral load-carrying capacities by increasing concrete compressive strength.


1998 ◽  
Vol 7 (6) ◽  
pp. 096369359800700 ◽  
Author(s):  
E. Gutiérrez ◽  
G. Di Salvo ◽  
J.M. Mieres ◽  
L. Mogensen ◽  
E. Shahidi ◽  
...  

In this paper we outline the development of an all-in-one composite reinforcing formwork system for manufacturing reinforced concrete elements, in particular, we describe the main experimental tests carried out on an 8 metre beam using high strength concrete poured and bonded on a hybrid, glass/carbon fibre formwork.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Chunyi Yu ◽  
Hua Ma ◽  
Yongping Xie ◽  
Zhenbao Li ◽  
Zhenyun Tang

The size effect on the seismic performance of conventional reinforced concrete columns has been observed in terms of flexural failure and shear failure. Under earthquake loading, slender columns experience flexural failure, and short columns experience flexure-shear failure and shear failure. However, the effect of section size on the seismic performance of high-strength reinforced concrete columns under the conditions of different shear span-to-depth ratios requires further confirmation. For this purpose, six high-strength reinforced concrete columns with shear span-to-depth ratios of 2 and 4 were subjected to cyclic loading in this study. The experimental results indicated that relative nominal flexural strength, energy dissipation coefficient, factor of safety, and local factor of safety all exhibited a strong size effect by decreasing with increasing column size. Furthermore, the size effect became stronger as the shear span-to-depth ratio was increased, except for average energy dissipation coefficient. The observed changes in the factor of safety were in good agreement with the Type 2 size effect model proposed by Bažant. Thus, based on the local factor of safety and Bažant’s Type 2 model, the code equation for moment capacity of different shear span-to-depth ratios was modified to provide a consistent factor of safety regardless of column size.


2015 ◽  
Vol 1106 ◽  
pp. 110-113 ◽  
Author(s):  
Ctislav Fiala ◽  
Jaroslav Hejl ◽  
Vladimira Tomalova ◽  
Vlastimil Bilek ◽  
Tereza Pavlu ◽  
...  

Paper presents some results of long-term research of a new optimized subtle precast construction system based on high performance silicate composites. The system is particularly aimed for building construction in passive or zero-energy standard. Subtle structural elements from high performance concrete (HPC) can be integrated into building envelope of energy efficient buildings with significant reduction of envelope structure and avoiding risk of thermal bridges. Significant advantages of subtle elements are material and energy savings during production, transport, manipulation and construction on building site.Paper presents experimental verification of connection between columns and beams ensured by Peikko ́s PCs corbels. Moreover, production of two prototypes of high performance fibre reinforced columns over two floors is presented. Prototypes were casted in ŽPSV a.s. plant, Litice nad Orlicí in June 2014. Complex LCA analysis of three various reinforced concrete columns was performed. Analysis covers construction life phase. Consequently, environmental impacts of assessed variants were compared and evaluated. Results show that it is possible to reduce some impacts on the environment from 16 up to 65% in comparison with common solution of reinforced concrete columns due to the utilization of excellent mechanical properties of high performance concrete that enables the design of subtle structural elements.


Sign in / Sign up

Export Citation Format

Share Document