scholarly journals Fuel molecular structure effect on soot mobility size in premixed C6 hydrocarbon flames

2021 ◽  
Author(s):  
Shruthi Dasappa ◽  
Joaquin Camacho

Soot formation in premixed laminar flames is examined for a canonical set of flames burning C6 hydrocarbon fuels. Particle mobility size and flame temperature measurements are complemented by flame structure calculations using detailed flame chemistry. Specifically, the evolution of the detailed soot particle size distribution (PSDF) is compared for n-hexane, n-hexene, 2-methylpentane, cyclohexane and benzene at a carbon-to-oxygen ratio of 0.69 and maximum flame temperature of 1800 K. Under this constraint, the overall sooting process is comparable as evidenced by similar time resolved bimodal PSDF. However, the first inception of particles and the persistence of nucleation-sized particles with time are depend upon the structure of the parent fuel. For the given conditions, the fastest onset of soot is observed in cyclohexane and benzene flames and the observed evolution of the PSDF also shows that nucleation-sized particles disappear sooner in cyclohexane and benzene flames. Flame structure computations incorporating detailed chemistry show a clear connection between the early onset of soot particles as fuel specific routes to PAH formation are predicted in the pre-flame region of the cyclohexane and benzene flames. These observations illustrate the impact of alkane, alkene, cycloalkane and aromatic fuel structure on soot formation in premixed flames. Analysis of soot particle morphology by atomic force microscopy indicates that most of size distribution is composed of aggregates. Simple aggregate mobility diameter analysis shows the spherical assumption taken to interpret the mobility diameter does not impact the PSDF number density result but the inferred volume fraction for aggregates deviates by up to an order of magnitude depending on the morphology assumptions adopted.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2012 ◽  
Vol 16 (5) ◽  
pp. 1391-1394 ◽  
Author(s):  
Kun Zhou

A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.


2019 ◽  
Vol 9 (19) ◽  
pp. 3989 ◽  
Author(s):  
Cheng Wang ◽  
Anthony Chun Yin Yuen ◽  
Qing Nian Chan ◽  
Timothy Bo Yuan Chen ◽  
Qian Chen ◽  
...  

This paper numerically examines the characterisation of fire whirl formulated under various entrainment conditions in an enclosed configuration. The numerical framework, integrating large eddy simulation and detailed chemistry, is constructed to assess the whirling flame behaviours. The proposed model constraints the convoluted coupling effects, e.g., the interrelation between combustion, flow dynamics and radiative feedback, thus focuses on assessing the impact on flame structure and flow behaviour solely attribute to the eddy-generation mechanisms. The baseline model is validated well against the experimental data. The data of the comparison case, with the introduction of additional flow channelling slit, is subsequently generated for comparison. The result suggests that, with the intensified circulation, the generated fire whirl increased by 9.42 % in peak flame temperature, 84.38 % in visible flame height, 6.81 % in axial velocity, and 46.14 % in velocity dominant region. The fire whirl core radius of the comparison case was well constrained within all monitored heights, whereas that of the baseline tended to disperse at 0.5   m height-above-burner. This study demonstrates that amplified eddy generation via the additional flow channelling slit enhances the mixing of all reactant species and intensifies the combustion process, resulting in an elongated and converging whirling core of the reacting flow.


2021 ◽  
Author(s):  
Armin Veshkini ◽  
Seth B. Dworkin

A numerical study is conducted of methane-air coflow diffusion flames at microgravity (μg) and normal gravity (lg), and comparisons are made with experimental data in the literature. The model employed uses a detailed gas phase chemical kinetic mechanism that includes PAH formation and growth, and is coupled to a sectional soot particle dynamics model. The model is able to accurately predict the trends observed experimentally with reduction of gravity without any tuning of the model for different flames. The microgravity sooting flames were found to have lower temperatures and higher volume fraction than their normal gravity counterparts. In the absence of gravity, the flame radii increase due to elimination of buoyance forces and reduction of flow velocity, which is consistent with experimental observations. Soot formation along the wings is seen to be surface growth dominated, while PAH condensation plays a more major role on centerline soot formation. Surface growth and PAH growth increase in microgravity primarily due to increases in the residence time inside the flame. The rate of increase of surface growth is more significant compared to PAH growth, which causes soot distribution to shift from the centerline of the flame to the wings in microgravity. Keywords: laminar diffusion flame,methane-air,microgravity, soot formation, numerical modelling


2019 ◽  
Vol 21 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Tommaso Lucchini ◽  
Daniel Pontoni ◽  
Gianluca D’Errico ◽  
Bart Somers

Computational fluid dynamics analysis represents a useful approach to design and develop new engine concepts and investigate advanced combustion modes. Large chemical mechanisms are required for a correct description of the combustion process, especially for the prediction of pollutant emissions. Tabulated chemistry models allow to reduce significantly the computational cost, maintaining a good accuracy. In the present work, an investigation of tabulated approaches, based on flamelet assumptions, is carried out to simulate turbulent Diesel combustion in the Spray A framework. The Approximated Diffusion Flamelet is tested under different ambient conditions and compared with Flamelet Generated Manifold, and both models are validated with Engine Combustion Network experimental data. Flame structure, combustion process and soot formation were analyzed in this work. Computed results confirm the impact of the turbulent–chemistry interaction on the ignition event. Therefore, a new look-up table concept Five-Dimensional-Flamelet Generated Manifold, that accounts for an additional dimension (strain rate), has been developed and tested, giving promising results.


2015 ◽  
Vol 13 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Z. He ◽  
K. Zhou ◽  
M. Xiao ◽  
F. Wei

Abstract Soot formed during the rich combustion of fossil fuels is an undesirable pollutant and health hazard. A newly developed Monte Carlo method is used to simulate the soot formation in a counterflow diffusion flame of ethylene. The simulation uses a new reaction mechanism available in literature, which focuses on modeling the formation of large polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). Nascent soot particles are assumed to form from the collision of eight different PAH molecules. Soot surface growth includes the hydrogen-abstraction-C2H2-addition mechanism and the condensation of the PAHs. Soot coagulation is in the free-molecular regime because particles are small (not more than a hundred nanometer). The coupling between vapor consumption and soot formation is handled by an interpolative moment method. Soot particle diffusion is found negligible throughout the counterflow flame, except for a very narrow region right around the stagnation plane. The soot particle size distribution (PSD) generally exhibits a bimodal shape. The first peak corresponds to a large number of nascent particles, while the second peak results from the competition between nucleation and coagulation. Surface growth affects the PSD quantitatively, but does not change the modality. A comparison with experimental data is also provided.


2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The current study analyzed the soot precursor of the n-butylbenzene found in diesel and kerosene in laminar flame, and integrated the corresponding poly-aromatic hydrocarbon (PAH) growth mechanism with the popular n-butylbenzene oxidation mechanisms to improve the soot formation prediction of n-butylbenzene. The size of soot precursor was determined by the fringe length in the core of soot particle since the nanostructure of the core of soot particle is similar with that of nascent soot particle formed by soot precursor nucleation. The geometric mean fringe length in core of soot particles was measured to be 0.67 nm approximating to the size of five-ringed PAH (A5). An A5 growth mechanism was added on a popular n-butylbenzene mechanism, and the combined mechanism was further reduced. After validation by the ignition delay time in literature, the combined mechanism was then validated by the primary particle diameter in laboratory and soot volume fraction of n-propylbenzene in literature. The calculated soot precursor concentration and PAH condensation rate of the combined mechanism are smaller than that of the base mechanism. The simulated primary soot particle diameter of proposed combined mechanism agrees well with the measure primary soot particle diameter. Comparing to the simulated soot volume fraction of base n-butylbenzene mechanism, the simulated soot volume fraction of proposed combined n-butylbenzene-A5 mechanism agrees well with the measure soot volume fraction of n-propylbenzene in literature. This study provides certain support for further investigation of soot formation of n-butylbenzene and its relative fuel like diesel and kerosene.


1990 ◽  
Vol 112 (1) ◽  
pp. 52-59 ◽  
Author(s):  
O¨. L. Gu¨lder ◽  
B. Glavincˇevski ◽  
M. F. Baksh

A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and aviation turbine and diesel fuels was made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown that the smoke point height is a lumped measure of fuel molecular constitution. The developed empirical relationship between soot volume fractions and fuel smoke point and hydrogen-to-carbon ratio was applied to five different combustor radiation data, and good agreement was obtained.


Author(s):  
Andrea Giusti ◽  
Epaminondas Mastorakos ◽  
Christoph Hassa ◽  
Johannes Heinze ◽  
Eggert Magens ◽  
...  

In this work a single sector lean burn model combustor operating in pilot only mode has been investigated using both experiments and computations with the main objective of analyzing the flame structure and soot formation at conditions relevant to aero-engine applications. Numerical simulations were performed using the Large Eddy Simulation (LES) approach and the Conditional Moment Closure (CMC) combustion model with detailed chemistry and a two-equation model for soot. The CMC model is based on the time-resolved solution of the local flame structure and allows to directly take into account the phenomena associated to molecular mixing and turbulent transport which are of great importance for the prediction of emissions. The rig investigated in this work, called Big Optical Single Sector (BOSS) rig, allows to test real scale lean burn injectors. Experiments, performed at elevated pressure and temperature, corresponding to engine conditions at part load, include OH-PLIF and PDA and have been complemented with new LII measurements for soot location. The wide range of measurements available allows a comprehensive analysis of the primary combustion region and can be exploited to further assess and validate the LES/CMC approach to capture the flame behaviour at engine conditions. It is shown that the LES/CMC approach is able to predict the main characteristics of the flame with a good agreement with the experiment in terms of flame shape, spray characteristics and soot location. Finite-rate chemistry effects appear very important in the region very close to the injector exit leading to the lift-off of the flame. Low levels of soot are observed immediately downstream of the injector exit, where a high amount of vaporized fuel is still present. Further downstream, the fuel vapour disappears quite quickly and an extended region characterised by the presence of pyrolysis products and soot precursors is observed. The strong production of soot precursors together with high soot surface growth rates lead to high values of soot volume fraction in locations consistent with the experiment. Soot oxidation is also very important in the downstream region resulting in a decrease of the soot level at the combustor exit. The results show a very promising capability of the LES/CMC approach to capture the main characteristics of the flame, soot formation and location at engine relevant conditions. More advanced soot models will be considered in future work in order to improve the quantitative prediction of the soot level.


2019 ◽  
Vol 21 (3) ◽  
pp. 514-539
Author(s):  
Mitchell D Hageman ◽  
David A Rothamer

The premixed prevaporized engine operation method was used to study the effects of main combustion thermodynamic properties and residence time on soot formation in a spark-ignition engine. Select cases were repeated under early-injection, nearly homogeneous, spark-ignition direct-injection operation to determine if the impact of the investigated parameters was the same or if the impact of in-cylinder liquid fuel injection and the resulting heterogeneous fuel-air mixture alters the trends. The original premixed prevaporized study hypothesized that soot is more likely to form after main combustion than during the main combustion event under completely homogeneous conditions. This hypothesis was tested in this study by performing premixed prevaporized combustion phasing sweeps at equivalence ratios (Φs) of 1.35 and 1.40. Both sweeps showed low sensitivity of the particle size distribution to significant changes in peak temperature and pressure during combustion, providing supporting evidence for the original hypothesis. This information was then used to design experiments to isolate the impacts of pressure (engine load) and residence time (engine speed). A premixed prevaporized load sweep showed that particulate emissions increase as a function of load/pressure. A spark-ignition direct-injection load variation showed similar pressure dependence for cases with in-homogeneous in-cylinder fuel-air distributions. A premixed prevaporized residence time variation (performed by changing engine speed) demonstrated an increase in soot formation with increased residence time. The results for identical spark-ignition direct-injection residence-time variations suggest a trade-off in soot formation between the effects of increased mixing time and increased residence time for spark-ignition direct-injection operation. The premixed prevaporized load and speed points were each investigated using Φ sweeps to determine the critical enrichment threshold for soot formation (ΦC) and the dependence of soot formation for Φ > ΦC. The spark-ignition direct-injection investigations were performed at Φ = 0.98, such that any soot formation above the non-fuel-related baseline particle size distribution could be attributed either to mixture heterogeneity or in-cylinder fuel films.


Sign in / Sign up

Export Citation Format

Share Document