scholarly journals Palm Oil Prediction Production Using Extreme Learning Machine

2019 ◽  
Author(s):  
Ronal Watrianthos

The total production of Indonesian palm oil (CPO) in 2018 reached 43.9 million tons, with a land area of 12.3 million hectares.However, every month there are still many companies that have problems in predicting palm oil production. Problems in predicting thisproduction can be solved by calculation methods in the field of artificial neural networks, namely the Extreme Learning Machine (ELM)method. This method can solve linear and non-linear data problems and provide better average computation compared to other methods inpredicting oil palm production. The data used is palm oil production data at PT Indo Palm Oil Labuhan Batu with a total of 297 in the period2017-2018. While the parameters used are planting age, land area, number of trees, and yields. The results of the best-hidden neuron testare 13 with 2 technical data features and the training data pattern is pattern 1. The average MAPE value is 20.1% with the fastestcomputing time is the use of the number of hidden neurons 2. So based on the test results, the method ELM has a predictive model withquite good performance because the MAPE value is in the range of 20% -50%.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Derya Avci ◽  
Akif Dogantekin

Parkinson disease is a major public health problem all around the world. This paper proposes an expert disease diagnosis system for Parkinson disease based on genetic algorithm- (GA-) wavelet kernel- (WK-) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by the ELM learning method. The Parkinson disease datasets are obtained from the UCI machine learning database. In wavelet kernel-Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using a genetic algorithm (GA). The performance of the proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specificity analysis, and ROC curves. The calculated highest classification accuracy of the proposed GA-WK-ELM method is found as 96.81%.


Author(s):  
Asım Balbay ◽  
Engin Avci ◽  
Ömer Şahin ◽  
Resul Coteli

Abstract Artificial neural networks (ANNs) have been widely used in modeling of various systems. Training of ANNs is commonly performed by backpropagation based on a gradient-based learning rule. However, it is well-known that such learning rule has several shortcomings such as slow convergence and training failures. This paper proposes a modeling technique based on Extreme Learning Machine (ELM) eliminating disadvantages of backpropagation based on a gradient-based learning rule for the drying of bittim (pistacia terebinthus). The samples for ELM based model are obtained by experimental studies. In experimental studies, the sample mass loss rate as a function time was investigated in different air velocities (0.5 and 1 m/s) and air temperatures (40, 60 and 80°C) in a designed dryer system. The obtained samples from experiments are used for training and testing of ELM. Further, some parameters of ELM such as type of activation function and the number of hidden neurons are set to obtain the best possible modelling results. The obtained prediction results show that ELM algorithm with tangent sigmoid activation function and 20 hidden neurons is appeared to be most optimal topology since maximum R2 and minimum rms (0.0500) and cov (0.2256) values are obtained. Thus, it is concluded that ELM can be used as an effective modelling tool in the drying of bittim (pistacia terebinthus) in fixed bed dryer system.


2017 ◽  
Vol 26 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Jie Wang ◽  
Liangjian Cai ◽  
Xin Zhao

AbstractAs we are usually confronted with a large instance space for real-word data sets, it is significant to develop a useful and efficient multiple-instance learning (MIL) algorithm. MIL, where training data are prepared in the form of labeled bags rather than labeled instances, is a variant of supervised learning. This paper presents a novel MIL algorithm for an extreme learning machine called MI-ELM. A radial basis kernel extreme learning machine is adapted to approach the MIL problem using Hausdorff distance to measure the distance between the bags. The clusters in the hidden layer are composed of bags that are randomly generated. Because we do not need to tune the parameters for the hidden layer, MI-ELM can learn very fast. The experimental results on classifications and multiple-instance regression data sets demonstrate that the MI-ELM is useful and efficient as compared to the state-of-the-art algorithms.


2015 ◽  
Vol 24 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Omer F. Alcin ◽  
Abdulkadir Sengur ◽  
Jiang Qian ◽  
Melih C. Ince

AbstractExtreme learning machine (ELM) is a recent scheme for single hidden layer feed forward networks (SLFNs). It has attracted much interest in the machine intelligence and pattern recognition fields with numerous real-world applications. The ELM structure has several advantages, such as its adaptability to various problems with a rapid learning rate and low computational cost. However, it has shortcomings in the following aspects. First, it suffers from the irrelevant variables in the input data set. Second, choosing the optimal number of neurons in the hidden layer is not well defined. In case the hidden nodes are greater than the training data, the ELM may encounter the singularity problem, and its solution may become unstable. To overcome these limitations, several methods have been proposed within the regularization framework. In this article, we considered a greedy method for sparse approximation of the output weight vector of the ELM network. More specifically, the orthogonal matching pursuit (OMP) algorithm is embedded to the ELM. This new technique is named OMP-ELM. OMP-ELM has several advantages over regularized ELM methods, such as lower complexity and immunity to the singularity problem. Experimental works on nine commonly used regression problems indicate that the investigated OMP-ELM method confirms these advantages. Moreover, OMP-ELM is compared with the ELM method, the regularized ELM scheme, and artificial neural networks.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xingshuo An ◽  
Xianwei Zhou ◽  
Xing Lü ◽  
Fuhong Lin ◽  
Lei Yang

Fog computing, as a new paradigm, has many characteristics that are different from cloud computing. Due to the resources being limited, fog nodes/MEC hosts are vulnerable to cyberattacks. Lightweight intrusion detection system (IDS) is a key technique to solve the problem. Because extreme learning machine (ELM) has the characteristics of fast training speed and good generalization ability, we present a new lightweight IDS called sample selected extreme learning machine (SS-ELM). The reason why we propose “sample selected extreme learning machine” is that fog nodes/MEC hosts do not have the ability to store extremely large amounts of training data sets. Accordingly, they are stored, computed, and sampled by the cloud servers. Then, the selected sample is given to the fog nodes/MEC hosts for training. This design can bring down the training time and increase the detection accuracy. Experimental simulation verifies that SS-ELM performs well in intrusion detection in terms of accuracy, training time, and the receiver operating characteristic (ROC) value.


2021 ◽  
Vol 13 (14) ◽  
pp. 8009
Author(s):  
Isa Ebtehaj ◽  
Keyvan Soltani ◽  
Afshin Amiri ◽  
Marzban Faramarzi ◽  
Chandra A. Madramootoo ◽  
...  

Shortwave radiation density flux (SRDF) modeling can be key in estimating actual evapotranspiration in plants. SRDF is the result of the specific and scattered reflection of shortwave radiation by the underlying surface. SRDF can have profound effects on some plant biophysical processes such as photosynthesis and land surface energy budgets. Since it is the main energy source for most atmospheric phenomena, SRDF is also widely used in numerical weather forecasting. In the current study, an improved version of the extreme learning machine was developed for SRDF forecasting using the historical value of this variable. To do that, the SRDF through 1981–2019 was extracted by developing JavaScript-based coding in the Google Earth Engine. The most important lags were found using the auto-correlation function and defined fifteen input combinations to model SRDF using the improved extreme learning machine (IELM). The performance of the developed model is evaluated based on the correlation coefficient (R), root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE). The shortwave radiation was developed for two time ahead forecasting (R = 0.986, RMSE = 21.11, MAPE = 8.68%, NSE = 0.97). Additionally, the estimation uncertainty of the developed improved extreme learning machine is quantified and compared with classical ELM and found to be the least with a value of ±3.64 compared to ±6.9 for the classical extreme learning machine. IELM not only overcomes the limitation of the classical extreme learning machine in random adjusting of bias of hidden neurons and input weights but also provides a simple matrix-based method for practical tasks so that there is no need to have any knowledge of the improved extreme learning machine to use it.


Author(s):  
Kai Hu ◽  
Zhaodi Zhou ◽  
Liguo Weng ◽  
Jia Liu ◽  
Lihua Wang ◽  
...  

Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous experiences. Among numerous machine learning algorithms, Weighted Extreme Learning Machine (WELM) is one of the famous cases recently. It not only has Extreme Learning Machine (ELM)’s extremely fast training speed and better generalization performance than traditional Neuron Network (NN), but also has the merit in handling imbalance data by assigning more weight to minority class and less weight to majority class. But it still has the limitation of its weight generated according to class distribution of training data, thereby, creating dependency on input data [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. This leads to the lack of finding optimal weight at which good generalization performance could be achieved [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. To solve it, a hybrid algorithm which composed by WELM algorithm and Particle Swarm Optimization (PSO) is proposed. Firstly, it distributes the weight according to the number of different samples, determines weighted method; Then, it combines the ELM model and the weighted method to establish WELM model; finally it utilizes PSO to optimize WELM’s three parameters (input weight, bias, the weight of imbalanced training data). Experiment data from both prediction and recognition show that it has better performance than classical WELM algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Gao ◽  
Jiangang Lv

Single-Stage Extreme Learning Machine (SS-ELM) is presented to dispose of the mechanical fault diagnosis in this paper. Based on it, the traditional mapping type of extreme learning machine (ELM) has been changed and the eigenvectors extracted from signal processing methods are directly regarded as outputs of the network’s hidden layer. Then the uncertainty that training data transformed from the input space to the ELM feature space with the ELM mapping and problem of the selection of the hidden nodes are avoided effectively. The experiment results of diesel engine fault diagnosis show good performance of the SS-ELM algorithm.


Author(s):  
Valerio Mario Salerno ◽  
Graziella Rabbeni

Power disaggregation aims at determining the appliance-by-appliance electricity consumption leveraging upon a single meter only, which measures the entire power demand. Data-driven procedures based on Factorial Hidden Markov Models have been proven remarkable results on energy disaggregation. Nevertheless, those procedures have various weaknesses: there is a scalability problem as the number of devices to observe raises and the algorithmic complexity of the inference step is severe. DNN architectures, such as Convolutional Neural Networks, have demonstrated to be a viable solution to deal with FHMMs shortcomings. Nonetheless, there are two significant limitations: a complicated and time-consuming training system based on back-propagation has to be employed to estimates the neural architecture parameters, and large amounts of training data covering as many operation conditions as possible need to be collected to attain top performances. In this work, we aim to overcome those limitations by leveraging upon the unique and useful characteristics of the extreme learning machine technique, which is based on a collection of randomly chosen hidden units and analytically defined output weights. Experiment evaluation has been conducted using the UK-DALE corpus. We find that the suggested approach achieves similar performances to recently proposed ANN-based methods and outperforms FHMMs. Besides, our solution generalises well to unseen houses.


Author(s):  
Hadi Suyono ◽  
Hari Santoso ◽  
Rini Nur Hasanah ◽  
Unggul Wibawa ◽  
Ismail Musirin

The generated energy capacity at a solar power plant depends on the availability of solar radiation. In some regions, solar radiation is not always available throughout the day, or even week, depending on the weather and climate in the area. To be able to produce energy optimally throughout the year, the availability of solar radiation needs to be predicted based on the weather and climate behavior data. Many methods have been so far used to predict the availability of solar radiation, either by mathematical approach, statistical probability, or even artificial intelligence-based methods. This paper describes a method of predicting the availability of solar radiation using the Extreme Learning Machine (ELM) method. It is based on the artificial intelligence methods and known to have a good prediction accuracy. To measure the performance of the ELM method, a conventional forecasting method using the Multiple Linear Regression (MLR) method has been used as a comparison. The implementation of both the ELM and MLR methods has been tested using the solar radiation data of the Basel City, Switzerland, which are available to public. Five years of data have been divided into training data and testing data for 6 case-studies considered. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) have been used as the parameters to measure the prediction results based on the actual data analysis. The results show that the obtained average values of RMSE and MAE by using the ELM method respectively are 122.45 W/m<sup>2</sup> and 84.04 W/m<sup>2</sup>, while using the MLR method they are 141.18 W/m<sup>2</sup> and 104.87 W/m<sup>2</sup> respectively. It means that the ELM method proved to perform better than the MLR method, giving 15.29% better value of RMSE parameter and 24.79% better value of MAE parameter.


Sign in / Sign up

Export Citation Format

Share Document