scholarly journals Effects on the immune system of a three-month consumption of an extremely diverse probiotic yogurt: decrease of serum alpha-N-acetylgalactosaminidase activity, detoxification and gut microbiota normalization

2020 ◽  
Author(s):  
Marco Ruggiero

In this study, we describe the changes associated with the consumption of an extremely biodiverse probiotic yogurt in a 55-year-old female from South Vietnam. In August 2019, the subject voluntarily embarked on a three-month nutritional experience and decided to share her experience with the goal of advancing scientific knowledge in the field of nutritional health. Consumption of this biodiverse probiotic yogurt was associated with a decrease in serum alpha-N-acetylgalactosaminidase (nagalase) activity, increased elimination of toxic metals and non-metal toxicants, a trend toward normalization of the lipid profile, and a trend toward a rebalance of the gut microbiota.

2014 ◽  
Vol 155 (22) ◽  
pp. 876-879
Author(s):  
András Schubert

The role of networks is swiftly increasing in the production and communication of scientific knowledge. Network aspects have, therefore, an ever growing importance in the analysis of the scientific enterprise, as well. The present paper demonstrates some techniques of studying the network of scientific journals on the subject of seeking the position of Orvosi Hetilap (Hungarian Medical Journal) in the international journal network. Orv. Hetil., 2014, 155(22), 876–879.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


Author(s):  
Abolfazl Mohammadzadeh ◽  
Neda Roshanravan ◽  
Naimeh Mesri Alamdari ◽  
Abdolrasoul Safaiyan ◽  
Erfan Mosharkesh ◽  
...  
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 699
Author(s):  
Cielo García-Montero ◽  
Oscar Fraile-Martínez ◽  
Ana M. Gómez-Lahoz ◽  
Leonel Pekarek ◽  
Alejandro J. Castellanos ◽  
...  

The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an “inflammatory disorder”, with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system–microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.


Physiology ◽  
2012 ◽  
Vol 27 (5) ◽  
pp. 300-307 ◽  
Author(s):  
Rémy Burcelin

The recent epidemic of obesity and diabetes and the diversity at the individual level could be explained by the intestinal microbiota-to-host relationship. More than four million gene products from the microbiome could interact with the immune system to induce a tissue metabolic infection, which is the molecular origin of the low-grade inflammation that characterizes the onset of obesity and diabetes.


2010 ◽  
Vol 10 (10) ◽  
pp. 735-744 ◽  
Author(s):  
Nadine Cerf-Bensussan ◽  
Valérie Gaboriau-Routhiau
Keyword(s):  

2004 ◽  
Vol 31 (3) ◽  
pp. 177-180 ◽  
Author(s):  
HENRY P. HUNTINGTON ◽  
ROBERT S. SUYDAM ◽  
DANIEL H. ROSENBERG

The integration or co-application of traditional knowledge and scientific knowledge has been the subject of considerable research and discussion (see Johannes 1981; Johnson 1992; Stevenson 1996; McDonald et al. 1997; Huntington et al. 1999, 2002), with emphasis on various specific topics including environmental management and conservation (see Freeman & Carbyn 1988; Ferguson & Messier 1997; Ford & Martinez 2000; Usher 2000; Albert 2001). In most cases, examples of successful integration compare traditional and scientific observations at similar spatial scales to increase confidence in understanding or to fill gaps that appear from either perspective. We present a different approach to integration, emphasizing complementarity rather than concordance in spatial perspective, using two migratory species as examples.


Sign in / Sign up

Export Citation Format

Share Document