scholarly journals Domain-specific and domain-general neural network engagement during human-robot interactions

2021 ◽  
Author(s):  
Ann Louise Pauline Marleen Hogenhuis ◽  
Ruud Hortensius

To what extent do domain-general and domain-specific neural networks generalise across interactions with human and artificial agents? In this exploratory study, we analysed a publicly available fMRI dataset (n = 22; Rauchbauer, et al., 2019) to probe the similarities and dissimilarities in neural architecture while participants conversed with another person or a robot. Incorporating trial-by-trial dynamics of the interactions, listening and speaking, we used whole-brain, region-of-interest, and functional connectivity analyses to test response profiles within and across social or non-social, domain-specific and domain-general networks, i.e., the person perception, theory-of-mind, object-specific, language, multiple-demand networks. Listening to a robot compared to a human resulted in higher activation in the language network, especially in areas associated with listening comprehension, and in the person perception network. No differences in activity of the theory-of-mind network were found. Results from the functional connectivity analysis showed no difference between interactions with a human or robot in within- and between-network connectivity. Together, these results suggest that while similar regions are activated during communication regardless of the type of conversational agent, activity profiles during listening point to a dissociation at a lower-level or perceptual level, but not higher-order cognitive level.

Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


2020 ◽  
Author(s):  
M D Wheelock ◽  
R E Lean ◽  
S Bora ◽  
T R Melzer ◽  
A T Eggebrecht ◽  
...  

Abstract Attention problems are common in school-age children born very preterm (VPT; < 32 weeks gestational age), but the contribution of aberrant functional brain connectivity to these problems is not known. As part of a prospective longitudinal study, brain functional connectivity (fc) was assessed alongside behavioral measures of selective, sustained, and executive attention in 58 VPT and 65 full-term (FT) born children at corrected-age 12 years. VPT children had poorer sustained, shifting, and divided attention than FT children. Within the VPT group, poorer attention scores were associated with between-network connectivity in ventral attention, visual, and subcortical networks, whereas between-network connectivity in the frontoparietal, cingulo-opercular, dorsal attention, salience and motor networks was associated with attention functioning in FT children. Network-level differences were also evident between VPT and FT children in specific attention domains. Findings contribute to our understanding of fc networks that potentially underlie typical attention development and suggest an alternative network architecture may help support attention in VPT children.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Jin ◽  
Chuzhong Li ◽  
Yazhuo Zhang ◽  
Taoyang Yuan ◽  
Jianyou Ying ◽  
...  

BackgroundPrior investigations of language functions have focused on the response profiles of particular brain regions. However, the specialized and static view of language processing does not explain numerous observations of functional recovery following brain surgery. To investigate the dynamic alterations of functional connectivity (FC) within language network (LN) in glioma patients, we explored a new flexible model based on the neuroscientific hypothesis of core-periphery organization in LN.MethodsGroup-level LN mapping was determined from 109 glioma patients and forty-two healthy controls (HCs) using independent component analysis (ICA). FC and mean network connectivity (mNC: l/rFCw, FCb, and FCg) were compared between patients and HCs. Correlations between mNC and tumor volume (TV) were calculated.ResultsWe identified ten separate LN modules from ICA. Compared to HCs, glioma patients showed a significant reduction in language network functional connectivity (LNFC), with a distinct pattern modulated by tumor position. Left hemisphere gliomas had a broader impact on FC than right hemisphere gliomas, with more reduced edges away from tumor sites (p=0.011). mNC analysis revealed a significant reduction in all indicators of FC except for lFCw in right hemisphere gliomas. These alterations were associated with TV in a double correlative relationship depending on the tumor position across hemispheres.ConclusionOur findings emphasize the importance of considering the modulatory effects of core-periphery mechanisms from a network perspective. Preoperative evaluation of changes in LN caused by gliomas could provide the surgeon a reference to optimize resection while maintaining functional balance.


2021 ◽  
Author(s):  
Ayako Isato ◽  
Tetsuya Suhara ◽  
Makiko Yamada

Individual differences in positive memory recollection are of interest in mental health, as positive memories can help protect people against stress and depression. However, it is unclear how individual differences in positive memory recollection are reflected in brain activity in the resting state. Here, we investigate the resting-state functional connectivity (FC) associated with interindividual variations in positive memory by employing cluster-level inferences based on randomization/permutation region of interest (ROI)-to-ROI analyses. We identified a cluster of FCs that was positively associated with positive memory performance, including the frontal operculum, central operculum, parietal operculum, Heschl's gyrus, and planum temporale. The current results suggest that positive memory is innervated by frontotemporal network connectivity, which may have implications for future investigations of vulnerability to stress and depression.


NeuroSci ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 75-94
Author(s):  
Kulpreet Cheema ◽  
William E. Hodgetts ◽  
Jacqueline Cummine

Much work has been done to characterize domain-specific brain networks associated with reading, but very little work has been done with respect to spelling. Our aim was to characterize domain-specific spelling networks (SpNs) and domain-general resting state networks (RSNs) in adults with and without literacy impairments. Skilled and impaired adults were recruited from the University of Alberta. Participants completed three conditions of an in-scanner spelling task called a letter probe task (LPT). We found highly connected SpNs for both groups of individuals, albeit comparatively more connections for skilled (50) vs. impaired (43) readers. Notably, the SpNs did not correlate with spelling behaviour for either group. We also found relationships between SpNs and RSNs for both groups of individuals, this time with comparatively fewer connections for skilled (36) vs. impaired (53) readers. Finally, the RSNs did predict spelling performance in a limited manner for the skilled readers. These results advance our understanding of brain networks associated with spelling and add to the growing body of literature that describes the important and intricate connections between domain-specific networks and domain-general networks (i.e., resting states) in individuals with and without developmental disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert A. McCutcheon ◽  
Toby Pillinger ◽  
Maria Rogdaki ◽  
Juan Bustillo ◽  
Oliver D. Howes

AbstractAlterations in cortical inter-areal functional connectivity, and aberrant glutamatergic signalling are implicated in the pathophysiology of schizophrenia but the relationship between the two is unclear. We used multimodal imaging to identify areas of convergence between the two systems. Two separate cohorts were examined, comprising 195 participants in total. All participants received resting state functional MRI to characterise functional brain networks and proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate concentrations in the frontal cortex. Study A investigated the relationship between frontal cortex glutamate concentrations and network connectivity in individuals with schizophrenia and healthy controls. Study B also used 1H-MRS, and scanned individuals with schizophrenia and healthy controls before and after a challenge with the glutamatergic modulator riluzole, to investigate the relationship between changes in glutamate concentrations and changes in network connectivity. In both studies the network based statistic was used to probe associations between glutamate and connectivity, and glutamate associated networks were then characterised in terms of their overlap with canonical functional networks. Study A involved 76 individuals with schizophrenia and 82 controls, and identified a functional network negatively associated with glutamate concentrations that was concentrated within the salience network (p < 0.05) and did not differ significantly between patients and controls (p > 0.85). Study B involved 19 individuals with schizophrenia and 17 controls and found that increases in glutamate concentrations induced by riluzole were linked to increases in connectivity localised to the salience network (p < 0.05), and the relationship did not differ between patients and controls (p > 0.4). Frontal cortex glutamate concentrations are associated with inter-areal functional connectivity of a network that localises to the salience network. Changes in network connectivity in response to glutamate modulation show an opposite effect compared to the relationship observed at baseline, which may complicate pharmacological attempts to simultaneously correct glutamatergic and connectivity aberrations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Véronique Daneault ◽  
Pierre Orban ◽  
Nicolas Martin ◽  
Christian Dansereau ◽  
Jonathan Godbout ◽  
...  

AbstractEven though sleep modification is a hallmark of the aging process, age-related changes in functional connectivity using functional Magnetic Resonance Imaging (fMRI) during sleep, remain unknown. Here, we combined electroencephalography and fMRI to examine functional connectivity differences between wakefulness and light sleep stages (N1 and N2 stages) in 16 young (23.1 ± 3.3y; 7 women), and 14 older individuals (59.6 ± 5.7y; 8 women). Results revealed extended, distributed (inter-between) and local (intra-within) decreases in network connectivity during sleep both in young and older individuals. However, compared to the young participants, older individuals showed lower decreases in connectivity or even increases in connectivity between thalamus/basal ganglia and several cerebral regions as well as between frontal regions of various networks. These findings reflect a reduced ability of the older brain to disconnect during sleep that may impede optimal disengagement for loss of responsiveness, enhanced lighter and fragmented sleep, and contribute to age effects on sleep-dependent brain plasticity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi225
Author(s):  
Katharina Rosengarth ◽  
Katharina Hense ◽  
Tina Plank ◽  
Mark Greenlee ◽  
Christina Wendl ◽  
...  

Abstract OBJECTIVE Space-occupying brain lesions as brain tumors in the occipital lobe have only been sparsely investigated so far, as this localization is extremely rare with only 1% of cases. It is still unclear how this affects the overall organization of the visual system. We investigated functional connectivity of functional networks associated with higher visual processing between patients with occipital space-occupying lesion in the occipital cortex and healthy controls. METHODS 12 patients with brain tumors, 7 patients with vascular lesions in the occipital cortex and 19 healthy subjects matched for age and sex were included. During functional MRI patients and subjects performed a visual excentricity mapping task. Data analysis was done using CONN toolbox based on Matlab. See-to-ROI connectivities of 23 Regions of Interest (ROIs) implemented in the CONN toolbox which were assigned to the Default Mode, Visual, Salience, Dorsal Attention, and Frontoparietal network were assessed. For each subject, connectivity was calculated using Fischer transformed pairwise correlations. These correlations were first considered separately for each group in one-sample analyses and then compared between the groups. RESULTS Main results show, that compared to control subjects and vascular patients, tumor patients showed weaker intra-network connectivity of components of all networks except the default-network. Tumor patients showed even stronger between-network connectivity in the default-mode network compared to the other groups. Weaker connectivity was observed within the salience network in both patient groups compared to controls. CONCLUSION The results indicate that in the course of the disease, compensatory countermeasures take place in the brain against a brain tumor or a space-occupying brain lesion with the aim of maintaining the performance level and cognitive processes for as long as possible. However, more research is needed in this area to understand the mechanisms and effects of brain tumors and space-consuming brain lesions on surrounding tissue.


2021 ◽  
Vol 30 (6) ◽  
pp. 526-534
Author(s):  
Evelina Fedorenko ◽  
Cory Shain

Understanding language requires applying cognitive operations (e.g., memory retrieval, prediction, structure building) that are relevant across many cognitive domains to specialized knowledge structures (e.g., a particular language’s lexicon and syntax). Are these computations carried out by domain-general circuits or by circuits that store domain-specific representations? Recent work has characterized the roles in language comprehension of the language network, which is selective for high-level language processing, and the multiple-demand (MD) network, which has been implicated in executive functions and linked to fluid intelligence and thus is a prime candidate for implementing computations that support information processing across domains. The language network responds robustly to diverse aspects of comprehension, but the MD network shows no sensitivity to linguistic variables. We therefore argue that the MD network does not play a core role in language comprehension and that past findings suggesting the contrary are likely due to methodological artifacts. Although future studies may reveal some aspects of language comprehension that require the MD network, evidence to date suggests that those will not be related to core linguistic processes such as lexical access or composition. The finding that the circuits that store linguistic knowledge carry out computations on those representations aligns with general arguments against the separation of memory and computation in the mind and brain.


Sign in / Sign up

Export Citation Format

Share Document