scholarly journals Inverted metamorphic zonation in the hanging and foot walls of the Mahabharat Thrust, Kathmandu-Trishuli area, central Nepal

1970 ◽  
Vol 14 ◽  
pp. 51-58
Author(s):  
Sobit Prasad Thapaliya ◽  
Lalu Prasad Paudel

Geological study was carried out along the Pasang Lahmu Highway from Kathmandu to Trishuli Bazaar covering both theLesser Himalayan autochthonous unit and the Kathmandu Nappe. The Lesser Himalayan rocks in the study area belong to theKunchha Formation, Benighat Slate and the Robang Formation of the Nawakot Complex. The Kathmandu Nappe (KathmanduComplex) comprises the Kalitar Formation, Gneiss Zone, Tistung Formation, Sopyang Formation and the Chandragiri Limestone.Petrographic study was carried out in the samples representing all the lithological units along the Pasang-Lahmu Highway.The study shows that the Kunchha Formation belongs to the biotite zone. The overlying units (Benighat Slate and RobangFormations) belong to the garnet zone. It is a clear evidence of inverted metamorphic zonation at the foot wall of the KathmanduNappe. The rocks of the Kathmandu Complex above the Mahabharat Thrust north of Kakani also show an inverse metamorphiczonation, i.e., the garnet zone is overlain by the sillimanite zone. However, in the southern part, the metamorphic zonation isnormal with biotite zone overlain by the chlorite zone. Although the inverted metamorphic zonation at the hanging wall of theMahabharat Thrust may be related to the high temperature contact metamorphism by pegmatite injection, the inverted metamorphismat the footwall needs an explanation.DOI: http://dx.doi.org/10.3126/bdg.v14i0.5439Bulletin of the Department of Geology, Vol. 14, 2011 pp. 51–58 

1970 ◽  
Vol 5 (7) ◽  
pp. 15
Author(s):  
Kamala Kant Acharya ◽  
Bernhard Grasemann

DOI = 10.3126/hjs.v5i7.1227Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.15  


2016 ◽  
Vol 51 ◽  
pp. 39-48
Author(s):  
Laxman Subedi ◽  
Kamala Kant Acharya

Lithological and microstructural study carried out in Bhainse –Manahari area, central Nepal reveals that the rock sequences of the Bhainse–Manahari area can be divided into two successions: the Nawakot Complex and the Kathmandu Complex. These two Complexes are separated by a distinct thrust boundary, the Mahabharat Thrust (MT). The Nawakot Complex consists of low-grade metamorphic rocks like slate, phyllite, quartzite and limestone while the Kathmandu Complex comprises medium grade (up to garnet grade) metamorphic rocks like garnet-schist, marble and mica-schist. The Mahabharat Thrust (MT) and the Manahari Thrust (MnT) are the two major thrusts in the study area. The MT separates the rocks of the Nawakot Complex (foot wall) in the south from the rocks of the Kathmandu Complex (hanging wall) in the north. The Manahari Thrust in the western part of the study area separates the Dunga Quartzite and the older Benighat Slates lying above it. The microstructure analysis reveals that the rocks in the thrust zone show higher deformation than in the neighboring rocks, and this gradually decreases away from the MT zone. The strain analysis of quartz grains reveals that the rock sequences of the hanging wall of the MT showed pure, simple and complex shear senses and the rocks of the footwall also showed the same pattern indicating MT as a stretching fault.


2021 ◽  
Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.


2021 ◽  
Author(s):  
Fang Ru-Ya ◽  
Lin Cheng-Han ◽  
Lin Ming-Lang

<p>Recent earthquake events have shown that besides the strong ground motions, the coseismic faulting often caused substantial ground deformation and destructions of near-fault structures. In Taiwan, many high-rise buildings with raft foundation are close to the active fault due to the dense population. The Shanchiao Fault, which is a famous active fault, is the potentially dangerous normal fault to the capital of Taiwan (Taipei). This study aims to use coupled FDM-DEM approach for parametrically analyzing the soil-raft foundation interaction subjected to normal faulting. The coupled FDM-DEM approach includes two numerical frameworks: the DEM-based model to capture the deformation behavior of overburden soil, and the FDM-based model to investigate the responses of raft foundation. The analytical approach was first verified by three  benchmark cases and theoretical solutions. After the verification, a series of small-scale sandbox model was used to validate the performance of the coupled FDM-DEM model in simulating deformation behaviors of overburden soil and structure elements. The full-scale numerical models were then built to understand the effects of relative location between the fault tip and foundation in the normal fault-soil-raft foundation behavior. Preliminary results show that the raft foundation located above the fault tip suffered to greater displacement, rotation, and inclination due to the intense deformation of the triangular shear zone in the overburden soil. The raft foundation also exhibited distortion during faulting. Based on the results, we suggest different adaptive strategies for the raft foundation located on foot wall and hanging wall if the buildings are necessary to be constructed within the active fault zone. It is the first time that the coupled FDM-DEM approach has been carefully validated and applied to study the normal fault-soil-raft foundation problems. The novel numerical framework is expected to contribute to design aids in future practical engineering.</p><p><strong>Keywords</strong>: Coupled FDM-DEM approach; normal faulting; ground deformation; soil-foundation interaction; raft foundation.</p>


2005 ◽  
Vol 217 (1-2) ◽  
pp. 1-28 ◽  
Author(s):  
Christopher R.M. McFarlane ◽  
James N. Connelly ◽  
William D. Carlson

2012 ◽  
Vol 49 (11) ◽  
pp. 1329-1363 ◽  
Author(s):  
Joel F. Cubley ◽  
David R.M. Pattison

The Grand Forks complex (GFC) is an elongate, north–south-trending metamorphic core complex in the Shuswap domain of southeastern British Columbia. It comprises predominantly upper-amphibolite- to granulite-facies paragneisses, schists, orthogneisses, amphibolites, and calc-silicates of the Paleoproterozoic to Paleozoic Grand Forks Group. The GFC is juxtaposed against low-grade rocks of the Quesnel terrane across two bounding Eocene normal faults: the Kettle River fault (KRF) on the east flank and the Granby fault (GF) on the west flank. Peak metamorphic Sil + Kfs ± Grt ± Crd (Sil, sillimanite; Kfs, potassium feldspar; Grt, garnet; Crd, cordierite) assemblages in paragneiss and Hbl ± Opx ± Cpx (Hbl, hornblende; Opx, orthopyroxene; Cpx, clinopyroxene) assemblages in amphibolite in the GFC formed at 750 ± 25 °C, 5.6 ± 0.5 kbar (1 kbar = 100 MPa; 20 ± 2 km depth). Stratigraphically overlying Sil + St-bearing pelitic schists (St, staurolite) within the complex record peak conditions of 600 ± 15 °C, 5.5 ± 0.25 kbar. Crd + Ilm + Spl (Crd, cordierite; Ilm, ilmenite; Spl, spinel) and Crd + Qtz (Qtz, quartz) coronal textures in paragneiss, and Cpx + Opx + Pl + Mt (Pl, plagioclase; Mt, magnetite) symplectites in amphibolite, formed at 735 ± 20 °C, 3.3 ± 0.5 kbar, indicating high-temperature, near-isothermal decompression of the GFC of ∼2.3 ± 0.7 kbar (∼8.2 ± 2.5 km) from peak conditions. Transitional greenschist–amphibolite metamorphic assemblages in the hanging wall of the KRF indicate conditions of ∼425 ± 25 °C and 2.2 ± 0.6 kbar (∼8 ± 2 km depth), with local contact metamorphism around Jurassic intrusions as high as 630–650 °C at ∼2.5 ± 0.5 kbar. The pressure contrast across the Kettle River fault prior to greenschist facies displacement was ∼0.8 ± 0.7 kbar, for a vertical offset of ∼2.9 ± 2.5 km. This is similar to estimates for the Granby fault on the west flank of the GFC. The GFC therefore experienced a two-stage exhumation history: early high-temperature decompression at upper-amphibolite- to granulite-facies conditions, followed by low-temperature exhumation at greenschist-facies conditions owing to movement on the Eocene Granby and Kettle River faults.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 677
Author(s):  
Ştefan Marincea ◽  
Delia-Georgeta Dumitraş ◽  
Cristina Sava ◽  
Frédéric Hatert ◽  
Fabrice Dal Bo

A shallow-level monzodioritic to quartz-monzodioritic pluton of the Upper Cretaceous age caused contact metamorphism of Tithonic–Kimmeridgian reef limestones at Măgureaua Vaţei (Metaliferi Massif, Apuseni Mountains, Romania). The preserved peak metamorphic assemblage includes gehlenite (Ak 33.64–38.13), monticellite, wollastonite-2M, Ti-poor calcic garnet, and Ca-Tschermak diopside (with up to 11.15 mol.% Ca-Tschermak molecule). From the monzodioritic body to the calcitic marble, the periplutonic zoning can be described as: monzodiorite/agpaitic syenite-like inner endoskarn/wollastonite + perovskite + Ti-poor grossular + Al-rich diopside/wollastonite + Ti-poor grossular + diopside + vesuvianite/gehlenite + wollastonite + Ti poor grossular + Ti-rich grossular (outer endoskarn)/wollastonite + vesuvianite + garnet (inner exoskarn)/wollastonite + Ti-rich garnet + vesuvianite + diopside (outer exoskarn)/calcitic marble. Three generations of Ca garnets could be identified, as follows: (1) Ti-poor grossular (Grs 53.51–81.03 mol.%) in equilibrium with gehlenite; (2) Ti-rich grossular (Grs 51.13–53.47 mol.%, with up to 19.97 mol.% morimotoite in solid solution); and (3) titanian andradite (Grs 32.70–45.85 mol.%), with up to 29.15 mol.% morimotoite in solid solution. An early hydrothermal stage produced retrogression of the peak paragenesis toward vesuvianite, hydroxylellestadite (or Si-substituted apatite), clinochlore, “hibschite” (H4O4-substituted grossular). A late hydrothermal event induced the formation of lizardite, chrysotile, dickite, thaumasite, okenite and tobermorite. A weathering paragenesis includes allophane, C-S-H gels and probably portlandite, unpreserved because of its transformation in aragonite then calcite. Overprints of these late events on the primary zoning are quite limited.


2020 ◽  
Author(s):  
Yves Guglielmi ◽  
Jens Birkholzer ◽  
Jonathan Ajo-Franklin ◽  
Christophe Nussbaum ◽  
Frederic Cappa ◽  
...  

<p>Understanding fault reactivation as a result of subsurface fluid injection in shales is critical in geologic CO<sub>2</sub> sequestration and in assessing the performance of radioactive waste repositories in shale formations. Since 2015, two semi-controlled fault activation projects, called FS and FS-B, have been conducted in a fault zone intersecting a claystone formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). In 2015, the FS project involved injection into 5 borehole intervals set at different locations within the fault zone. Detailed pressure and strain monitoring showed that injected fluids can only penetrate the fault when it is at or above the Coulomb failure criterion, highlighting complex mixed opening and slipping activation modes. Rupture modes were strongly driven by the structural complexity of the thick fault. An overall normal fault activation was observed. One key parameter affecting the reactivation behavior is the way the fault’s initial very low permeability dynamically increases at rupture. Such complexity may also explain a complex interplay between aseismic and seismic activation periods. Intact rock pore pressure variations were observed in a large volume around the rupture patch, producing pore pressure drops of ~4 10<sup>-4</sup> MPa up to 20 m away from the ruptured fault patch. Fully coupled three-dimensional numerical analyses indicated that the observed pressure signals are in good accordance with a poro-elastic stress transfer triggered by the fault dislocation.</p><p> </p><p>In 2019, the FS-B experiment started in the same fault, this time activating a larger fault zone volume of about 100 m extent near (and partially including) the initial FS testbed. In addition to the monitoring methods employed in the earlier experiment, FS-B features time-lapse geophysical imaging of long-term fluid flow and rupture processes. Five inclined holes were drilled parallel to the Main Fault dip at a distance of about 2-to-5m from the fault core “boundary”, with three boreholes drilled in the hanging wall and two boreholes drilled in the foot wall. An active seismic source-receiver array deployed in these five inclined boreholes allows tracking the variations of p- and s-wave velocities during fault leakage associated with rupture, post-rupture and eventually self-sealing behavior. The geophysical measurements are complemented by local three-dimensional displacements and pore pressures measurements distributed in three vertical boreholes drilled across the fault zone. DSS, DTS and DAS optical fibers cemented behind casing allow for the distributed strain monitoring in all the boreholes. Twelve acoustic emission sensors are cemented in two boreholes set across the fault zone and close to the injection borehole. Preliminary results from the new FS-B fault activation experiment will be discussed.</p>


1995 ◽  
Vol 11 ◽  
Author(s):  
M. R. Dhital

In the Gorkha-Ampipal area, low-grade metamorphic rocks of the Kuncha Formation are delimited in the north by the Masel Thrust. The Kuncha Formation is characterised by doubly-plunging, en-echelon types of noncylindrical folds which are 2 to 20 km long (essentially in NW-SE direction), and have wavelengths of a few km. Mineral and stretching lineations are gently plunging due NNE or SSW. The hanging wall of the Masel Thrust is represented by garnet-biotite schists and gneisses. The schists and gneisses make up a steeply northward dipping homocline. In contrast to the rocks of the footwall, they are generally gently dipping and constitute several mesoscopic folds. Further north, the homocline is discordantly overlain by the intensely deformed unit of phyllites, graphitic schists, marbles, crystalline limestones, and calcareous quartzites. The Main Central Thrust sharply overrides the latter unit and brings with it gently northward dipping kyanite-garnet-biotite schists, quartzites, feldspathic schists, and mylonitic gneisses. There are several nepheline syenite intrusive bodies in the Kuncha Formation in the vicinity of the villages Harmi Bhnnjyang, Ampipal, Chanp Bhanjyang, Bhulbhule Khar, and Luintel Bhanjyang. Two separate bodies are also encountered at the confluence of the Masel Khola and the Daraundi Khola. The nepheline syenite bodies observed in the study area vary widely in their shape, size, and orientation. The largest pluton is observed in the vicinity of the villages Ampipal and Chanp Bhanjyang. It is about 7.5 km long in NNE-SSW direction and about 2 km wide. The second largest body is observed between the villages Bandre and Luintel Bhanjyang. It is about 2.5 km long approximately in east-west direction and 300 m wide. Numerous other smaller bodies ranging in size from hundreds of m to a few cm also occur in the region. The nephelinesyenites show sharp and irregular contacts with the country rock, they are crosscut by numerous dykes, and occasionally the effect of contact metamorphism is also observed in the country rock. The northeastern part of the largest nepheline syenite pluton (which occurs between Ampipal and Chanp Bhanjyang) is covered by about 500 m thick band of impure marbles. Rare, thin alternations of impure marble with phyllite as well as large (more than 10 m in diameter) scattered marble boulders areseen on the slopes NE of Chanp Bhanjyang, N of Bhulbhule Khar, at the saddle of Lagamkot, and at Khanigaun. The secondary mineralisation in the marbles is represented by magnetite, actinolite, biotite, and chlorite. There exist a few old iron mine workings in the magnetite mineralisation zones. Similar minerals are also seen in the nepheline syenite suggesting a direct relationship between the mineralisation in the nepheline syenite and the marbles. Generally, the nepheline syenite bodies exhibit the same trends of foliation and lineation as those of the country rock, and therefore, they must be intruded before the development of the secondary structures. There are a few hot springs at Bhulbhule Khar, which contain a high amount of H2S gas and sulphur, and are coming through the nepheline syenite. The development of copper as well as other secondary ore minerals and several generations of veins in the country rock, and the presence of hot springs probably indicate a continued hydrothermal activity in that area up to the recent times.


Sign in / Sign up

Export Citation Format

Share Document