scholarly journals Seismic Vulnerability in the Himalayan Region

2011 ◽  
Vol 1 ◽  
pp. 14-17 ◽  
Author(s):  
Harihar Paudyal ◽  
Ananta Panthi

The frequently occurring strong earthquakes in the Himalayan region signify the seismic vulnerability in the region. The continued northward movement of Indian plate is generating large amount of stress at the plate boundary which is being released in form of large and great earthquakes (M≥7). Absence of such great events in the Himalayan front for last six decades and in some segments for last two centuries envisages the region as a high potential zone for future seismic hazard. In this paper we studied the larger events in the central Himalayan region.Key words: Central Himalaya; Large earthquakes; Seismic hazardsThe Himalayan Physics Vol.1, No.1, May, 2010Page: 14-17Uploaded Date: 28 July, 2011

2018 ◽  
Vol 481 (1) ◽  
pp. 41-63 ◽  
Author(s):  
V. C. Thakur ◽  
R. Jayangondaperumal ◽  
V. Joevivek

AbstractThe tectonic framework of NW Himalaya is different from that of the central Himalaya with respect to the position of the Main Central Thrust and Higher Himalayan Crystalline and the Lesser and Sub Himalayan structures. The former is characterized by thick-skinned tectonics, whereas the thin-skinned model explains the tectonic evolution of the central Himalaya. The boundary between the two segments of Himalaya is recognized along the Ropar–Manali lineament fault zone. The normal convergence rate within the Himalaya decreases from c. 18 mm a−1 in the central to c. 15 mm a−1 in the NW segments. In the last 800 years of historical accounts of large earthquakes of magnitude Mw ≥ 7, there are seven earthquakes clustered in the central Himalaya, whereas three reported earthquakes are widely separated in the NW Himalaya. The earthquakes in central Himalaya are inferred as occurring over the plate boundary fault, the Main Himalayan Thrust. The wedge thrust earthquakes in NW Himalaya originate over the faults on the hanging wall of the Main Himalayan Thrust. Palaeoseismic evidence recorded on the Himalayan front suggests the occurrence of giant earthquakes in the central Himalaya. The lack of such an event reported in the NW Himalaya may be due to oblique convergence.


2021 ◽  
Vol 64 (3) ◽  
pp. SE330
Author(s):  
Chandan Dey ◽  
Santanu Baruah ◽  
Bijit Kr Choudhury ◽  
Timangshu Chetia ◽  
Sowrav Saikia ◽  
...  

Earthquake is one of the most frightening and destructive phenomena of nature. The northeast India region, as well as its adjoining South-Asian neighbours including Myanmar and Bangladesh, is tectonically and seismically most active. The region categorized under the highest level of seismic hazard potential: Zone V, of the seismic zonation map of India, has experienced nearly 22 large (M ≥7.0) and two great earthquakes (M S ∼ 8.7) in the past 130 years. All these earthquakes caused wide-spread damage over the region. In the recent past, with rapid urbanization combined with a significant population rise as compared to those times when these great/large earthquakes occurred, the seismic vulnerability index has increased manifold. The situation demands widespread dissemination of seismic hazard and preparedness information via community engagement and highlighting on potentially tragic consequences of earthquakes by conducting extensive mock drill exercises & earthquake awareness programmes. In this paper, the role and efforts of the statuary bodies in the region, such as National Disaster Management Authority (NDMA) and CSIR – Northeast Institute of Science and Technology (NEIST) and societal program of Academy of Scientific and Innovative research, to mitigate and minimize seismic hazard by extensive dissemination of earthquake information, via scientific scenario and impact assessment, is holistically compiled.


Author(s):  
Martina Caruso ◽  
Rui Pinho ◽  
Federica Bianchi ◽  
Francesco Cavalieri ◽  
Maria Teresa Lemmo

AbstractA life cycle framework for a new integrated classification system for buildings and the identification of renovation strategies that lead to an optimal balance between reduction of seismic vulnerability and increase of energy efficiency, considering both economic losses and environmental impacts, is discussed through a parametric application to an exemplificative case-study building. Such framework accounts for the economic and environmental contributions of initial construction, operational energy consumption, earthquake-induced damage repair activities, retrofitting interventions, and demolition. One-off and annual monetary expenses and environmental impacts through the building life cycle are suggested as meaningful performance metrics to develop an integrated classification system for buildings and to identify the optimal renovation strategy leading to a combined reduction of economic and environmental impacts, depending on the climatic conditions and the seismic hazard at the site of interest. The illustrative application of the framework to an existing school building is then carried out, investigating alternative retrofitting solutions, including either sole structural retrofitting options or sole energy refurbishments, as well as integrated strategies that target both objectives, with a view to demonstrate its practicality and to explore its ensuing results. The influence of seismic hazard and climatic conditions is quantitatively investigated, by assuming the building to be located into different geographic locations.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1626-1651
Author(s):  
John E Lens M.EERI ◽  
Mandar M Dewoolkar ◽  
Eric M Hernandez M.EERI

This article describes the approach, methods, and findings of a quantitative analysis of the seismic vulnerability in low-to-moderate seismic hazard regions of the Central and Eastern United States for system-wide assessment of typical multiple span bridges built in the 1950s through the 1960s. There is no national database on the status of seismic vulnerability of bridges, and thus no means to estimate the system-wide damage and retrofit costs for bridges. The study involved 380 nonlinear analyses using actual time-history records matched to four representative low-to-medium hazard target spectra corresponding with peak ground accelerations from approximately 0.06 to 0.3 g. Ground motions were obtained from soft and stiff site seismic classification locations and applied to models of four typical multiple-girder with concrete bent bridges. Multiple-girder bridges are the largest single category, comprising 55% of all multiple span bridges in the United States. Aging and deterioration effects were accounted for using reduced cross-sections representing fully spalled conditions and compared with pristine condition results. The research results indicate that there is an overall low likelihood of significant seismic damage to these typical bridges in such regions, with the caveat that certain bridge features such as more extensive deterioration, large skews, and varied bent heights require bridge-specific analysis. The analysis also excludes potential damage resulting from liquefaction, flow-spreading, or abutment slumping due to weak foundation or abutment soils.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


2021 ◽  
Author(s):  
Carolina Filizzola ◽  
Roberto Colonna ◽  
Alexander Eleftheriou ◽  
Nicola Genzano ◽  
Katsumi Hattori ◽  
...  

&lt;p&gt;In order to evaluate the potentiality of the parameter &amp;#8220;RST-based satellite TIR anomalies&amp;#8221; in relation with earthquake (M&amp;#8805;4) occurrence, in recent years we performed three long-term statistical correlation analyses on different seismically active areas, such as Greece (Eleftheriou et al., 2016), Italy (Genzano et al., 2020), and Japan (Genzano et al., 2021).&lt;/p&gt;&lt;p&gt;With this aim, by means of the RST (Robust Satellite Techniques; Tramutoli, 1998, 2007) approach we analysed ten-year time series of satellite images collected by the SEVIRI sensor (on board the MSG platforms) over Greece (2004-2013) and Italy (2004-2014), and by the JAMI and IMAGER sensors (on board the MTSAT satellites) over Japan (2005-2015). &amp;#160;By applying empirical spatial-temporal rules, which are established also taking account of the physical models up to now proposed to explain seismic TIR anomaly appearances, the performed long -term correlation analyses put in relief that a non-casual relation exists between satellite TIR anomalies and the occurrence of earthquakes.&lt;/p&gt;&lt;p&gt;At the same time, in the carried out studies we introduced and validated refinements and improvements to the RST approach, which are able to minimize the proliferation of the false positives (i.e. TIR anomalies independent from the seismic sources, but due to other causes such as meteorological factors).&amp;#160; &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Here, we summarize the achieved results and discuss them from the perspective of a multi-parameter system, which could improve our present knowledge on the earthquake-related processes and increase our capacity to assess the seismic hazard in the medium-short term (months to days).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Eleftheriou, A., C. Filizzola, N. Genzano, T. Lacava, M. Lisi, R. Paciello, N. Pergola, F. Vallianatos, and V. Tramutoli (2016), Long-Term RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Greece in the Period 2004&amp;#8211;2013, Pure Appl. Geophys., 173(1), 285&amp;#8211;303, doi:10.1007/s00024-015-1116-8.&lt;/p&gt;&lt;p&gt;Genzano, N., C. Filizzola, M. Lisi, N. Pergola, and V. Tramutoli (2020), Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy, Ann. Geophys, 63, 5, PA550, doi:10.4401/ag-8227.&lt;/p&gt;&lt;p&gt;Genzano, N., C. Filizzola, K. Hattori, N. Pergola, and V. Tramutoli (2021), Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005 - 2015), Journal of Geophysics Research &amp;#8211; Solid Earth, doi: 10.1029/2020JB020108 (accepted).&lt;/p&gt;&lt;p&gt;Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for Environmental Monitoring: theory and applications, in Proceedings of SPIE, vol. 3496, edited by E. Zilioli, pp. 101&amp;#8211;113, doi: 10.1117/12.332714&lt;/p&gt;&lt;p&gt;Tramutoli, V. (2007), Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications, in 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, pp. 1&amp;#8211;6, IEEE. doi: 10.1109/MULTITEMP.2007.4293057&lt;/p&gt;


2019 ◽  
Vol 514 ◽  
pp. 251-264 ◽  
Author(s):  
Narayan Prasad Gaire ◽  
Yub Raj Dhakal ◽  
Santosh K. Shah ◽  
Ze-Xin Fan ◽  
Achim Bräuning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document