scholarly journals Structural and Thermal Evolution of the Siwaliks of Western Nepal

1995 ◽  
Vol 11 ◽  
Author(s):  
J. L. Mugnier ◽  
E. Chalaron ◽  
G. Mascle ◽  
B. Pradier ◽  
G. Herail

The piedmont of the Himalayas is formed in Western Nepal by: a) Siwalik sediments affected by folds, thrust and back­ thrust structures and b) intra-belt basins (Duns) that are dis laced piggyback above the thrust sheets. Vitrinite reflectance values (VRo) are found between 0.3% and 0.5% in Middle Siwalik sediments and between 0.6 and 1% in Lower Siwaliks. The thermal maturity of the organic matter agrees with maximum burial depth (3500 m for Middle Siwaliks and 6000 m for Lower Siwaliks) that do not strongly exceed the stratigraphic thickness of the Siwaliks Group. Intense erosion concomitant with deformation balances closely tectonic thickening and prevent burial of the Siwalik sediments at great depth. Nonetheless, Duns developed above the steeper part of the basal decollement and/or ahead of back-thrusts prevent the exhumation of rock and could lead to greater burial depth.

2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1406 ◽  
Author(s):  
Seyedalireza Khatibi ◽  
Mehdi Ostadhassan ◽  
David Tuschel ◽  
Thomas Gentzis ◽  
Humberto Carvajal-Ortiz

Vitrinite maturity and programmed pyrolysis are conventional methods to evaluate organic matter (OM) regarding its thermal maturity. Moreover, vitrinite reflectance analysis can be difficult if prepared samples have no primary vitrinite or dispersed widely. Raman spectroscopy is a nondestructive method that has been used in the last decade for maturity evaluation of organic matter by detecting structural transformations, however, it might suffer from fluorescence background in low mature samples. In this study, four samples of different maturities from both shale formations of Bakken (the upper and lower members) Formation were collected and analyzed with Rock-Eval (RE) and Raman spectroscopy. In the next step, portions of the same samples were then used for the isolation of kerogen and analyzed by Raman spectroscopy. Results showed that Raman spectroscopy, by detecting structural information of OM, could reflect thermal maturity parameters that were derived from programmed pyrolysis. Moreover, isolating kerogen will reduce the background noise (fluorescence) in the samples dramatically and yield a better spectrum. The study showed that thermal properties of OM could be precisely reflected in Raman signals.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengfei Wang ◽  
Chen Zhang ◽  
Aorao Liu ◽  
Pengfei Zhang ◽  
Yibo Qiu ◽  
...  

Extensive exploration of the marine shale of the Niutitang Formation in south China has been conducted. However, exploration and development results have varied considerably in different areas. For example, the Niutitang shale in Jingyan City (Southwestern Sichuan Basin) produces a large amount of gas with a long period of stable production. In contrast, most development wells in the Niutitang shale in Chongqing City do not produce gas. Scanning electron microscopy images showed that the organic matter (OM) pore development in the Niutitang shale in Jingyan is abundant, large in size, and are well connected. In contrast, OM pores in the Niutitang shale in Chongqing are rarely observed. OM pore development of the Jingyan and Chongqing shales is mainly controlled by thermal maturity as shown by equivalent vitrine reflectance determinations. The moderate thermal maturity has resulted in the development of a large number of OM pores in the Niutitang shale in Jingyan, whereas the high thermal maturity of the Niutitang shale in Chongqing has led to the destruction of most of the OM pores. Due to the existence of ancient uplift, the shale was buried shallowly in the process of hydrocarbon generation evolution, and the shale avoided excessive thermal evolution and retained appropriate thermal maturity. In the Jingyan area, due to its location near the central uplift in the Sichuan Basin, the Niutitang shale deposited nearby avoided excessive evolution, and a large number of OM pores were retained in the reservoir.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 679
Author(s):  
Seyedalireza Khatibi ◽  
Arash Abarghani ◽  
Kouqi Liu ◽  
Alexandra Guedes ◽  
Bruno Valentim ◽  
...  

In order to assess a source rock for economical exploitation purposes, many parameters should be considered; regarding the geochemical aspects, the most important ones are the amount of organic matter (OM) and its quality. Quality refers to the thermal maturity level and the type of OM from which it was formed. The origin of the OM affects the ability of the deposited OM between sediments to generate oil, gas, or both with particular potential after going through thermal maturation. Vitrinite reflectance and programmed pyrolysis (for instance, Rock-Eval) are common methods for evaluating the thermal maturity of the OM and its potential to generate petroleum, but they do not provide us with answers to what extent solid bitumen is oil-prone or gas-prone, as they are bulk geochemical methods. In the present study, Raman spectroscopy (RS), as a powerful tool for studying carbonaceous materials and organic matter, was conducted on shale and coal samples and their individual macerals to show the potential of this technique in kerogen typing and to reveal the parent maceral of the examined bitumen. The proposed methodology, by exhibiting the chemical structure of different organic matters as a major secondary product in unconventional reservoirs, can also detect the behavior of solid bitumen and its hydrocarbon production potential for more accurate petroleum system evaluation.


2012 ◽  
Vol 63 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Paweł Kosakowski ◽  
Magdalena Wróbel

Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.


2021 ◽  
Vol 11 (10) ◽  
pp. 3663-3688
Author(s):  
Amin Tavakoli

AbstractThe aim of this study is to provide a better understanding of the type of source input, quality, quantity, the condition of depositional environment and thermal maturity of the organic matter from Bukit Song, Sarawak, which has not been extensively studied for hydrocarbon generation potential. Petrological and geochemical analyses were performed on 13 outcrop samples of the study location. Two samples, having type III and mixed kerogen, showed very-good-to-excellent petroleum potential based on bitumen extraction and data from Rock–Eval analysis. The rest of the samples are inert—kerogen type IV. In terms of thermal maturity based on vitrinite reflectance, the results of this paper are akin to previous studies done in the nearby region reported as either immature or early mature. Ph/n-C18 versus Pr/n-C17 data showed that the major concentration of samples is within peat coal environment, whilst two samples were associated with anoxic marine depositional environment, confirmed by maceral content as well. Macerals mainly indicated terrestrial precursors and, overall, a dominance of vitrinite. Quality of the source rock based on TOC parameter indicated above 2 wt. % content for the majority of samples. However, consideration of TOC and S2 together showed only two samples to have better source rocks. Existence of cutinite, sporinite and greenish fluorescing resinite macerals corroborated with the immaturity of the analysed coaly samples. Varying degrees of the bitumen staining existed in a few samples. Kaolinite and illite were the major clays based on XRD analysis, which potentially indicate low porosity. This study revealed that hydrocarbon-generating potential of Bukit Song in Sarawak is low.


1992 ◽  
Vol 32 (1) ◽  
pp. 300 ◽  
Author(s):  
R.W.T. Wilkins ◽  
J.R. Wilmshurst ◽  
G. Hladky ◽  
M.V. Ellacott ◽  
C.P. Buckingham

The sediments of the North West Shelf pose several problems for the accurate determination of thermal maturity by vitrinite reflectance. There are some serious discrepancies between the results of different workers; in some wells there is a surprisingly small increase of reflectance with depth, and it is sometimes difficult to honour these data in thermal maturity modelling. There appear to be two major sources of error in the reflectance data. These are firstly, the effect known as 'suppression' of vitrinite reflectance, and secondly, the difficulty of identifying the vitrinite population in dispersed organic matter.These problems may be addressed by the fluorescence alteration technique which is closely related to vitrinite reflectance but has two special advantages. Firstly, it depends on an analysis of the fluorescence alteration response of a small representative population of organic matter in which the individual macerals need not be identified. Secondly, anomalous vitrinites with suppressed vitrinite reflectance are readily characterized, and the corrected equivalent reflectances determined.The technique has been tested on three North West Shelf petroleum exploration wells, Barrow-1, Jupiter-1 and Flamingo-1. Major discrepancies between measured and equivalent vitrinite reflectance appear to originate in part from the difficulty of identifying the vitrinite population in dispersed organic matter from marine sediments. There is also evidence of suppression of vitrinite reflectance in most samples from Barrow-1, in the Flamingo Group and Plover Formation of Flamingo-1, and in the upper part of the Mungaroo Formation of Jupiter-1.A model is proposed to facilitate the assessment of measured vitrinite reflectance data from Carnarvon or Bonaparte Basin wells. Suppression effects are likely to have influenced measured vitrinite reflectance results from wells for which the strongest data are obtained from the Lower Cretaceous fluvio-deltaic Barrow Group sediments or their equivalents.


1993 ◽  
Vol 30 (9) ◽  
pp. 1782-1798 ◽  
Author(s):  
S. A. Dehler ◽  
C. E. Keen

Regional maps of lithospheric deformation and thermal history have been derived for the eastern continental margin of Canada. Subsidence associated with the rifting and cooling stages of rifted margin formation was calculated from gridded maps of sediment thickness and bathymetry along the Labrador, Grand Banks, and Nova Scotian margins. A two-layer lithospheric extension model was used to compute the deformation and thermal evolution of each region. Deformation results show that the crust and lower lithosphere have generally stretched by different amounts, and that either crustal or subcrustal lithospheric stretching dominates beneath the various basins. Thermal modelling results for the older Nova Scotian and Grand Banks margins show a strong correlation between thermal gradient, crustal stretching, and sediment thickness, and the predicted thermal gradient pattern for the younger Labrador margin correlates extremely well with predicted stretching of the still-cooling subcrustal lithosphere. Predictions of sediment maturity (vitrinite reflectance) of basin deposits were obtained from the derived time – temperature histories. Model results have been constrained with observations from individual boreholes and extrapolated away from these well-constrained areas into regions beyond the frontiers of present exploration. Results are presented as maps showing depths to present-day peak thermal maturity zones and the ages at which earliest post-rift sediments reached peak maturity levels. This reconnaissance approach has led to predictions of thermal maturity zones suitable for oil or gas generation in western Orphan Basin and beneath the continental slopes.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7088
Author(s):  
Qianru Wang ◽  
Haiping Huang ◽  
Chuan He ◽  
Zongxing Li

Shale oil and source rock samples of the Carboniferous Keluke Formation from well Chaiye 2 in the Delingha Depression were analyzed by gas chromatography–mass spectrometry. Source rocks were highly mature at the gas generation stage with vitrinite reflectance (Ro) of 1.45–1.88%. However, the oil produced from the shale reservoir was characterized by abundant biomarkers but low abundance of diamondoid hydrocarbons with estimated Ro of ca. 0.78%, indicating hydrocarbons were still at a relatively low thermal maturity level. As the crude oil was generated and accumulated autochthonously, preliminary results indicate that crude oil and source rocks witnessed differential thermal evolution and significant disparity of the current thermal maturity in the shale reservoir due to rapid tectonic subsidence and clay mineral catalysts that accelerated the thermal maturation process. Although tectonic uplifts occurred afterwards, the vitrinite recorded the highest maturity that source rocks have ever reached, whereas the oil has not reached the same maturity level due to less impact from thermal alteration or mineral catalysis than source rocks in the shale reservoir. Such a discovery enlarges the hydrocarbon perseveration of maturity ranges in reservoirs, particularly for the unconventional tight formation, and benefits potential hydrocarbon exploration from highly mature sediments.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 484
Author(s):  
Amalia Spina ◽  
Simonetta Cirilli ◽  
Andrea Sorci ◽  
Andrea Schito ◽  
Geoff Clayton ◽  
...  

This study focuses on the thermal maturity of Permian deposits from the Zagros Basin, Southwest Iran, employing both optical methods (Thermal Alteration Index, Palynomorph Darkness Index, Vitrinite Reflectance, UV Fluorescence) and geochemical analyses of organic matter (Rock Eval Pyrolysis and MicroRaman spectroscopy) applied to the Faraghan Formation along two investigated Darreh Yas and Kuh e Faraghan surface sections. Furthermore, an integrated palynofacies and lithofacies analysis was carried out in order to integrate the few studies on the depositional environment. The Faraghan Formation, which is widely distributed in the Zagros area, generally consists of shale intercalated with sandstones and pebble conglomerates in the lower part, followed by a succession of sandstone, siltstone and shaly intercalations and with carbonate levels at the top. The integrated palynofacies and lithofacies data confirm a coastal depositional setting evolving upwards to a shallow marine carbonate environment upwards. Rock Eval Pyrolysis and Vitrinite Reflectance analysis showed that the organic matter from samples of the Darreh Yas and Kuh e Faraghan sections fall in the mature to postmature range with respect to the oil to gas generation window, restricting the thermal maturity range proposed by previous authors. Similar results were obtained with MicroRaman spectroscopy and optical analysis such as Thermal Alteration Index and UV Fluorescence. Palynomorph Darkness Index values were compared with Rock Eval Pyrolysis and vitrinite reflectance values and discussed for the first time in the late stage of oil generation.


Sign in / Sign up

Export Citation Format

Share Document