THE EFFECT OF PLATE GEOMETRY OF FLAT PLATE SOLAR COLLECTOR UNDER VARIABLE HEAT FLUX

2021 ◽  
Vol 25 (Special) ◽  
pp. 2-108-2-114
Author(s):  
Mohammed H. Alkhafaji ◽  
◽  
Basim H. Abood ◽  
Mohammed H. Alhamdo ◽  
◽  
...  

In the current study, the effect of different plate geometry namely smooth plate (traditional model) and V-corrugated plate (new model) on the output of the FPSC is conducted numerically and experimentally. The outdoor experimental work has been done in Baghdad- Iraq. All geometric models and the numerical simulations were carried out in the current study using the commercial CFD method, ANSYS 19. R3. The results indicated that the difference between numerical results and experimental findings is 8.12 % for average water temperature in a tank, while the working fluid temperature at the exist of riser pipe is about 8.36 %. The thermal performance for the new model is found higher than that for traditional model. The thermal performance of new model in terms of water temperature inside the tank was found higher than traditional model by 10.7 %. In addition, the overall thermal efficiency of collector for the new model has been increased about 9.9 % than traditional model.

Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 52
Author(s):  
David Febraldo ◽  
Wayan Nata Septiadi ◽  
Ketut Astawa

Pipa kalor (Heat pipe) merupakan salah satu teknologi penukar kalor dua fase sistem pasif, pipa kalor itu sendiri memiliki struktur dengan konduktivitas termal tinggi, hal ini memungkinkan transportasi panas dengan mempertahankan perbedaan suhu sehingga seragam di sepanjang bagian yang dipanaskan dan didinginkan. Kinerja termal pipa kalor dapat ditentukan dari nilai hambatan panas. Ketika hambatan panas bernilai kecil, maka laju perpindahan kalor meningkat begitu pula sebaliknya. Pengujian kinerja termal  pipa kalor tembaga pada fluida kerja air telah dilakukan. Kinerja termal dapat diamati dari hasil pengambilan data temperatur dan pengolahan data. Hasil dari penelitian ini menunjukkan perbedaan temperatur antara temperatur pemanas dan dan temperatur fluida terus meningkat dengan kenaikan laju perpindahan panas dari variasi beban pemanasan 70 volt, 90 volt, 110 vot, 130 volt, dan 150 volt. Heat pipe is a passive two-phase heat exchanger technology, heat pipe itself has a structure with high thermal conductivity, this allows heat transportation by maintaining a uniform temperature difference along the heated and cooled part. Thermal performance of heat pipes can be determined from the value of heat resistance. When heat resistance is small, the heat transfer rate increases and vice versa. Testing the thermal performance of copper heat pipes on the working fluid of water has been carried out. Thermal performance can be observed from the results of temperature data collection and data processing. The results of this study indicate the temperature difference between heating temperature and fluid temperature continues to increase with increasing heat transfer rates from variations in heating loads of 70 volts, 90 volts, 110 vot, 130 volts, and 150 volts.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Author(s):  
Guilherme Antonio Bartmeyer ◽  
Victor Vaurek Dimbarre ◽  
Pedro Leineker Ochoski Machado ◽  
PAULO HENRIQUE DIAS DOS SANTOS ◽  
Thiago Antonini Alves

2021 ◽  
Vol 13 (11) ◽  
pp. 6462
Author(s):  
Mir Waqas Alam ◽  
Basma Souayeh

In the present decade, research regarding solar thermal air heaters (SAHs) has noticed a continuous progression in thermo-hydraulic performance augmentation approaches. There now exists a wide variety of thermo-hydraulic performance augmentation approaches and researchers have designated various structures. Nevertheless, there seems to be no generalization to any of the approaches employed. The present numerical investigation reports on the thermo-hydraulic characteristics and thermal performance for flow through a varied length (full, medium, half, and short length) dimple solar air heater (SAH) tube. The study highlights recent developments on enhanced tubes to augment heat transfer in SAH. The influence of different length ratio, dimple height ratio (H), and pitch ratio (s) on thermo-hydraulic characteristics have been investigated in the Reynolds number (Re) range from 5000 to 25,000. Air is used as the working fluid. The commercial software ANSYS Fluent is used for simulation. The shear stress transport (SST) model is used as the turbulence model. Thermal energy transport coefficient is increased in the full-length dimple tube (FLDT), compared to the medium-length dimple tube (MLDT), half-length dimple tube (HLDT) and short-length dimple tube (SLDT). Similarly, the pitch ratio (s) has more influence on Nusselt number (Nu) compared to the dimple height ratio (H). The friction factor decreases with an increase in pitch ratio. Nu increases and f decreases with increasing Re for all combinations of H and s. Low s and higher H yields high enhancement of HT and PD. Integration of artificial roughness on the tube increases the values of Nu and f by 5.12 times and 77.23 times for H = 0.07, s = 1.0 at Re value of 5000 and 25,000, respectively, in regard to the plain tube. For all the tested cases, the thermo-hydraulic performances (η) are greater than unity.


Author(s):  
Ennio Macchi ◽  
Giampaolo Manzolini ◽  
Paolo Silva

The role of renewable energies and in particular solar energy could be fundamental in future scenarios of worldwide increase of energy demand: thermodynamic solar energy can play an important role in country with high solar radiation. This paper discusses the development and testing of an innovative code for the prediction of thermodynamic performances at nominal conditions and the estimation of costs of the whole plant, for different parabolic trough solar fields. The code allows a preliminary design of the solar field lay-out, the sizing of the main components of the plant and the optimization of the steam cycle. The code, named PATTO (PArabolic Trough Thermodynamic Optimization), allows to separately calculate the thermal efficiency of (i) parabolic trough systems in commerce as well as (ii) combination of components of various commercial systems, in order to exploit different technology solutions: combination of mirrors, receivers and supports. Using the selected parabolic troughs, the plant configuration is then completed by connecting pipes, heat exchangers, the steam cycle, and storage tanks. The code is also flexible in terms of working fluid, temperature and pressure range. Regarding the power block, a conventional steam cycle with super-heater and re-heater sections and up to seven regenerative bleedings is adopted. It is possible to use also simpler configuration as without re-heater or with less regenerative bleedings. Moreover, thanks to simple or sophisticated economic correlations depending on available data, the code calculates the overall investment cost for the considered solar field and the power block. The code performs steady state analysis at nominal conditions, while future developments are planned regarding part load analysis and transient simulations. The model is tested towards real applications and reference values found in literature; in particular, focusing on SEGS VI plant in the USA. Detailed results showing code potentiality, are presented in terms of solar field and power block energy balances, plant auxiliaries, piping and economic analysis.


2018 ◽  
Vol 44 ◽  
pp. 00017 ◽  
Author(s):  
Agnieszka Chmielewska

The article discusses the influence of the cold water temperature on the amount of energy consumed for the purposes of the DHW preparation in multi-family buildings. The article begins with a presentation of the DHW consumption readings from a multi-family building, recorded on a monthly basis during the period of 4 years. The readings constituted the base for calculating the demand for energy for the purposes of the DHW preparation. Subsequently, basing on the output water temperature readings from the water treatment plant, it was proved that the temperature of the mains water fluctuates throughout the year. The review of the available literature, as well as the measurements, confirmed that it is necessary to develop a new model of the cold water temperature that would take into account the type of intake in a water treatment plant. The final part of the article presents how the accepted assumptions about the temperature of the mains water influence the consumption of energy for the purposes of the DHW preparation.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2960 ◽  
Author(s):  
Carlo Renno

The knowledge of the actual energy performances of a concentrating photovoltaic and thermal (CPV/T) system with a linear focus optics, allows to evaluate the possibility of adopting this type of system for cogeneration purposes. Hence, the main aim of this paper is the design, realization, setting and modeling of a linear focus CPV/T system in the high concentration field. An experimental linear focus CPV/T plant was created in order to determine its electrical and thermal performance under different working conditions in terms of environment temperature, sunny and cloudy conditions, focal length, etc. Moreover, a theoretical model of the linear focus CPV/T system was also studied. This model evaluates the temperatures of the working fluid that flows in the cooling circuit of the CPV/T system under several operating conditions. The temperatures of the triple junction (TJ) cells, experimentally evaluated referring to different solar radiation and atmospheric conditions, were considered as the input data for the model. The values of the fluid temperature, theoretically and experimentally determined, were thus compared with good agreement. The electrical production of the CPV/T system depends generally on the TJ cell characteristics and the concentration factor, while the thermal production is above all linked to the system configuration and the direct normal irradiance (DNI) values. Hence, in this paper the electric power obtained by the linear-focus CPV/T system was evaluated referring to the cogeneration applications, and it was verified if the TJ cell and the cooling fluid reach adequate temperature levels in this type of system, in order to match the electrical and the thermal loads of a user.


Author(s):  
Huayi Feng ◽  
Yanping Zhang ◽  
Chongzhe Zou

In this paper, a 3-D numerical model is proposed to investigate the capability of generating high operating temperature for a modified solar cavity receiver in large-scale dish Stirling system. The proposed model aims to evaluate the influence of radiation intensity on the cavity receiver performance. The properties of the heat transfer fluid in the pipe and heat transfer losses of the receiver are investigated by varying the direct normal irradiance from 400W/m2 to 1000W/m2. The temperature of heat transfer fluid, as well as the effect of radiation intensity on the heat transfer losses have been critically presented and discussed. The simulation results reveal that the heat transfer fluid temperature and thermal efficiency of the receiver are significantly influenced by different radiation flux. With the increase of radiation intensity, the efficiency of the receiver will firstly increase, then drops after reaching the highest point. The outlet working fluid temperature of the pipe will be increased consistently. The results of the simulations show that the designed cylindrical receiver used in dish Stirling system is capable to achieve the targeted outlet temperature and heat transfer efficiency, with an acceptable pressure drop.


Sign in / Sign up

Export Citation Format

Share Document