A 3-D Model Simulation of High Temperature Solar Cavity Receiver

Author(s):  
Huayi Feng ◽  
Yanping Zhang ◽  
Chongzhe Zou

In this paper, a 3-D numerical model is proposed to investigate the capability of generating high operating temperature for a modified solar cavity receiver in large-scale dish Stirling system. The proposed model aims to evaluate the influence of radiation intensity on the cavity receiver performance. The properties of the heat transfer fluid in the pipe and heat transfer losses of the receiver are investigated by varying the direct normal irradiance from 400W/m2 to 1000W/m2. The temperature of heat transfer fluid, as well as the effect of radiation intensity on the heat transfer losses have been critically presented and discussed. The simulation results reveal that the heat transfer fluid temperature and thermal efficiency of the receiver are significantly influenced by different radiation flux. With the increase of radiation intensity, the efficiency of the receiver will firstly increase, then drops after reaching the highest point. The outlet working fluid temperature of the pipe will be increased consistently. The results of the simulations show that the designed cylindrical receiver used in dish Stirling system is capable to achieve the targeted outlet temperature and heat transfer efficiency, with an acceptable pressure drop.

Author(s):  
Andrea Giostri ◽  
Claudio Saccilotto ◽  
Paolo Silva ◽  
Ennio Macchi ◽  
Giampaolo Manzolini

The paper deals with the development and testing of an innovative code for the performance prediction of solar trough based CSP plants in off-design conditions. The code is developed in MS Visual Basic 6.0 with Excel as user interface. The proposed code originates from a previously presented algorithm for on-design sizing and cost estimation of the solar field lay-out, as well as of the main components of the plant, including connecting piping and the steam cycle. Off-design calculation starts from data obtained through the on-design algorithm and considers steady-state situations. Both models are implemented in the same software, named PATTO (PArabolic Trough Thermodynamic Optimization), which is very flexible: the optical-thermal model of collectors can simulate different kinds of parabolic trough systems in commerce, including a combination of various mirrors, receivers and supports. The code is also flexible in terms of working fluid, temperature and pressure range, and can also simulate direct steam generation plants (DSG). Regarding the power block, a conventional steam cycle with super-heater, eventually a re-heater section, and up to seven regenerative bleedings is adopted. The off-design model calculates thermal performance of collectors taking into account proper correlations for convective heat transfer coefficients, considering also boiling regime in DSG configurations. Solar plant heat and mass balances and performances at off-design conditions are estimated by accounting for the constraints imposed by the available heat transfer areas in heat exchangers and condenser, as well as the characteristic curve of the steam turbine. The numerical model can be used for a single calculation in a specific off-design condition, as well as for a whole year estimation of energy balances with an hourly resolution. The model is tested towards real applications and reference values found in literature; in particular, focusing on SEGS VI plant in the USA and SAM® code. Annual energy balances with ambient condition taken from TMY3 database are obtained, showing good accuracy of predicted performances. The code potentiality in the design process reveals twofold: it can be used for plant optimization in feasibility studies; moreover it is useful to find the best control strategy of a plant, especially the mass flow of heat transfer fluid in each operating condition.


2021 ◽  
Author(s):  
Kelsi M. Katcher ◽  
Dereje Amogne

Abstract Uncertainty around the design and control of the supercritical CO2 power cycle must be reduced before this technology can be implemented for large-scale grid support. To better understand the day-to-day performance of an sCO2 cycle, off-design performance calculations must be included for all power block components, and performance assumptions must be removed. This study has expanded the modeled scope to include the air-side performance for the dry cooler and has incorporated discretized heat transfer calculations for both streams through the pre-cooler to better predict off-design performance. This study considered a recompression Brayton cycle in a concentrating solar power application. The cycle model utilized fixed sCO2 turbomachinery maps for the main compressor, recompressor, and expander operating to supply approximately 10 MW gross at the design point. Fixed vendor-supplied fan curves were used to calculate the air-side performance of the dry cooler. The primary heater was modeled considering both the sCO2 and heat transfer fluid streams. Off-design performance was predicted for an ambient temperature range of 0–55°C, a HTF temperature range of 705–735°C, and a HTF mass flow range of 50–105% of the design point value. To understand the importance of modeling the air-side performance, the cycle off-design performance was also calculated using a constant CO2 outlet temperature assumption and a constant approach temperature assumption for the dry cooler. Results show that using these assumptions can significantly alter the power output and cycle efficiency predictions.


2017 ◽  
Vol 13 (7) ◽  
pp. 6348-6355
Author(s):  
Suresh. R ◽  
Subash Chandra Bose.R ◽  
Arumugam. K ◽  
Anbazhagan. R ◽  
Sathiyamoorthy. V ◽  
...  

             Solar parabolic trough collector is one of the most efficient and an effective technology to deal with environmental pollution and it has gained much attention due to the recent energy demand. The solar parabolic trough collector is one of the most promising techniques for absorbing the heat from the sun. This heat is utilized for electricity generation and other industrial heating applications. This paper describes the theoretical and experimental assessment of performance of the circular and elliptical absorbers used in solar parabolic trough collector. The absorber tube of parabolic trough collector is used to transfer the heat to the working fluid. The working fluid considered over here is water which is the best operating medium in direct steam generation. The mass flow rate of water in absorber tube is analyzed in 3 stages as 0.016, 0.024 and 0.030 kg/s respectively. The experimental test is done in Chennai-Tamilnadu, Southern part of India which experiences a superior temperature throughout the year. The experiment is conducted for the period of one year from June 2015 to May 2016. The performance improvement focuses on collector efficiency, useful heat transfer rate, outlet temperature of working fluid, temperature gradient, overall heat transfer rate and the thermal losses.


Author(s):  
Mohamad Aramesh ◽  
Fathollah Pourfayaz ◽  
Mehdi Haghir ◽  
Alibakhsh Kasaeian ◽  
Mohammad H Ahmadi

In this article, the performance of a double-effect LiBr-H2O absorption refrigeration cycle is studied and is improved by applying solar energy and utilizing nanofluids. A trough collector is used to preheat the working fluid before entering the generator of the cycle. In addition, four different nanofluids are considered as the heat transfer fluid of the collector: Al2O3, Ag, Cu, and CuO. The effects of using nanofluids on the outlet temperature of the heat transfer fluid, the temperature of the working fluid entering the generator, the heat produced by the generator, and COP of the cycle are studied. Different concentrations of the nanoparticles from 0 to 2.5% are considered for the nanofluids. The results indicate that in all the concentrations, Ag nanoparticles will have a better performance comparing to the other types. Furthermore, it was concluded that the higher concentrations of the nanoparticles and along with it the higher inlet temperature of the generator will decrease the generator heat production rate up to 4%. Moreover, considering the constant cooling capacity of the cycle, usage of the Ag nanoparticles in the concentration of 2.5% increases the value of COP up to 3.9%, with respect to the pure water.


2013 ◽  
Vol 724-725 ◽  
pp. 909-915
Author(s):  
Ping Fang Hu ◽  
Zhong Yi Yu ◽  
Fei Lei ◽  
Na Zhu ◽  
Qi Ming Sun ◽  
...  

A vertical U-tube ground heat exchanger can be utilized to exchange heat with the soil in ground source heat pump systems. The outlet temperature of the working fluid through the U-tube not only accounts for heat transfer capacity of a ground heat exchanger, but also greatly affects the operational efficiency of heat pump units, which is an important characteristic parameter of heat transfer process. It is quantified by defining a thermal effectiveness coefficient. The performance evaluation is performed with a three dimensional numerical model using a finite volume technique. A dynamic simulation was conducted to analyze the thermal effectiveness as a function of soil thermal properties, backfill material properties, separation distance between the two tube legs, borehole depth and flow velocity of the working fluid. The influence of important characteristic parameters on the heat transfer performance of vertical U-tube ground heat exchangers is investigated, which may provide the references for the design of ground source heat pump systems in practice.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Ping Cheng ◽  
Shian-Min Tsai ◽  
Chin-Chi Cheng

Vacuum freeze-drying technology is applicable to the process of high heat-sensitive products. Due to the long drying period and extremely low processing temperature and pressure, the uniform and efficiency of heat transfer fluid temperature in shelf are critical for product quality. Therefore, in this study, the commercial computer fluid dynamics (CFD) software, FLUENT, was utilized for three-dimension numerical simulation of the shelf vacuum freeze-drying process. The influences of different inlet and outlet positions for shelves on the uniformity of the flow rate and temperature were discussed. Moreover, it explored the impacts on the temperature gradient of shelves after heat exchange of different flow rates and low temperature materials. In order to reduce the developing time and optimize the design, the various secondary refrigerants in different plies of shelves were investigated. According to the effect of heat exchange between different flow rates and low temperature layer material shelves on the temperature gradient of shelves surface, the minimum temperature gradient was 20 L/min, and the maximum was 2.5 L/min.


2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


Author(s):  
Brian Janke ◽  
Thomas Kuehn

Thermodynamic analysis has been conducted for geothermal power cycles using a portion of deep ground sequestered CO2 as the working fluid. This allows energy production from much shallower depths and in geologic areas with much lower temperature gradients than those of current geothermal systems. Two different system designs were analyzed for power production with varying reservoir parameters, including reservoir depth, temperature, and CO2 mass flow rate. The first design is a direct single-loop system with the CO2 run directly through the turbine. This system was found to provide higher system efficiency and power production, however design complications such as the need for high pressure turbines, two-phase flow through the turbine and the potential for water-CO2 brine mixtures, could require the use of numerous custom components, driving up the cost. The second design is a binary system using CO2 as the heat transfer fluid to supply thermal energy to an Organic Rankine Cycle (ORC). While this system was found to have slightly less power production and efficiency than the direct system, it significantly reduces the impact of design complications associated with the direct system. This in turn reduces the necessity for certain custom components, thereby reducing system cost. While performance of these two systems is largely dependent on location and operating conditions, the binary system is likely applicable to a larger number of sites and will be more cost effective when used in combination with current off-the-shelf ORC power plants.


Sign in / Sign up

Export Citation Format

Share Document