scholarly journals HEAVY METALS (Pb+2, Ni+2, Zn+2) REMOVAL FROM WASTEWATER USING LOW COST ADSORBENTS: A REVIEW

2021 ◽  
Vol 25 (Special) ◽  
pp. 3-88-3-96
Author(s):  
Hibatallah J. Shamkhi ◽  
◽  
Tamara K. Hussein ◽  

Pollution with heavy metal ions lead, zinc and nickel resulting from industrial wastewater for various industries such as electroplating industry, batteries, metal refining mines and other factories which discharge into the environment causing damage and pollution to the environment, living organisms, and the majority of heavy metals carcinogenic due to its high toxicity and its containment of dangerous chemicals. Potential danger to human health in all forms by ingestion, inhalation, or skin contact pose by heavy metals ions such as lead, nickel, zinc, and others. To prevent hazards, they must be removed before disposal by different methods such as ion- exchange, chemical separation, filtration, membrane separation, and adsorption. The purpose of this research is to review different low cost adsorbent materials to remove heavy metal ions lead, zinc and nickel from wastewater.

2005 ◽  
Vol 52 (10-11) ◽  
pp. 151-156 ◽  
Author(s):  
J. Mikes ◽  
M. Siglova ◽  
A. Cejkova ◽  
J. Masak ◽  
V. Jirku

Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned above is necessary to identify the functional groups entered in the metals elimination processes.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yangyang Ji ◽  
Feifei Guan ◽  
Xin Zhou ◽  
Xiaoqing Liu ◽  
Ningfeng Wu ◽  
...  

AbstractPollution of heavy metals in agricultural environments is a growing problem to the health of the world’s human population. Green, low-cost, and efficient detection methods can help control such pollution. In this study, a protein biosensor, mApple-D6A3, was built from rice-derived Cd2+-binding protein D6A3 fused with the red fluorescent protein mApple at the N-terminus to detect the contents of heavy metals. Fluorescence intensity of mApple fused with D6A3 indicated the biosensor’s sensitivity to metal ions and its intensity was more stable under alkaline conditions. mApple-D6A3 was most sensitive to Cu2+, then Ni2+, then Cd2+. Isothermal titration calorimetry experiments demonstrated that mApple-D6A3 successfully bound to each of these three metal ions, and its ability to bind the ions was, from strongest to weakest, Cu2+  > Cd2+  > Ni2+. There were strong linear relationships between the fluorescence intensity of mApple-D6A3 and concentrations of Cd2+ (0–100 μM), Cu2+ (0–60 μM) and Ni2+ (0–120 μM), and their respective R2 values were 0.994, 0.973 and 0.973. When mApple-D6A3 was applied to detect concentrations of heavy metal ions in water (0–0.1 mM) or culture medium (0–1 mM), its accuracy for detection attained more than 80%. This study demonstrates the potential of this biosensor as a tool for detection of heavy metal ions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abate Ayele ◽  
Setegn Haile ◽  
Digafe Alemu ◽  
M. Kamaraj

Human and industrial activities produce and discharge wastes containing heavy metals into the water resources making them polluted, threatening human health and the ecosystem. Biosorption, the process of passive cation binding by dead or living biomass, represents a potentially cost-effective way of eliminating toxic heavy metals from industrial wastewater. The abilities of microorganisms to remove metal ions in solution have been extensively studied; in particular, live and dead fungi have been recognized as a promising class of low-cost adsorbents for the removal of heavy metal ions. The biosorption behavior of fungal biomass is getting attention due to its several advantages; hence, it needs to be explored further to take its maximum advantage on wastewater treatment. This review discusses the live and dead fungi characteristics of sorption, factors influencing heavy metal removal, and the biosorption capacities for heavy metal ions removal and also discusses the biosorption mechanisms.


Author(s):  
Anastasia Pournara ◽  
Christina Bika ◽  
Xitong Chen ◽  
Theodore Lazarides ◽  
Spyridon Kaziannis ◽  
...  

Heavy metal ions represent hazardous and harmful contaminants for living organisms and the environment and thus, it is of urgent need to develop new materials sufficient to detect and remove...


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.


2012 ◽  
Vol 12 (2/3/4) ◽  
pp. 318 ◽  
Author(s):  
Ali Ahmadpour ◽  
Tahereh Rohani Bastami ◽  
Masumeh Tahmasbi ◽  
Mohammad Zabihi

2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2018 ◽  
Vol 70 ◽  
pp. 11-23 ◽  
Author(s):  
Oleg Marenkov ◽  
Mykola V. Prychepa ◽  
Julia Kovalchuk

In the experiment with marbled crayfishProcambarusvirginalis(Lyko, 2017), chronic effects of various concentrations of heavy metal ions on the physiological state and enzyme activity were investigated. The obtained results showed that among the investigated heavy metals nickel ions influenced the weight indexes and mortality of crustaceans the most negatively. According to the results of the research, significant changes were noted in the individual biochemical parameters of marbled crayfish under the influence of manganese, lead and nickel ions. The most significant changes in the activity of lactate dehydrogenase were detected in muscle tissues affected by manganese and nickel ions. A significant decrease in the activity of succinate dehydrogenase in muscle of marbled crayfish was determined after the action of heavy metal ions. Investigation of changes in the activity of alkaline phosphatase under the influence of the ions of manganese, lead and nickel has its own characteristics, which indicates certain violations in the tissues of cell membranes. Changes in the activity of enzymes were also reflected in the overall protein content. Changes in these parameters may indicate a rapid biochemical response of crustaceans to the toxic effects of heavy metals.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Sign in / Sign up

Export Citation Format

Share Document