scholarly journals 136) On the Resistance to Wear of Timber (Part 5) : A Trial Apparatus for Wear Test on Timber(Materials・Execution)

1957 ◽  
Vol 57.1 (0) ◽  
pp. 141-144
Author(s):  
Makoto Yoshioka
Keyword(s):  
2019 ◽  
Vol 289 ◽  
pp. 02002
Author(s):  
Nader Ghafoori ◽  
Matthew O. Maler ◽  
Meysam Najimi ◽  
Ariful Hasnat

This paper examines the abrasion resistance of high early-strength concrete developed for rapid repair of highways and bridge decks. The cement types chosen for this study included ASTM Type III, ASTM Type V, and Calcium Sulfoaluminate (CSA) cements. A cement content of 386 kg/m3 (650 lb/yd3) was maintained for all studied concretes. Test samples were tested after 24 hours and 28 days of curing in order to evaluate compressive strength and depth of wear. Test results revealed that the opening time to attain minimum required compressive strength for CSA cement concrete was one hour, whereas the values for Type V and Type III cement concretes were 8.5 and 6 hours, respectively. After 24 hours curing, CSA cement concrete displayed the highest strength, but lowest resistance to wear. The 28-day cured CSA cement concrete produced the highest strength and resistance to abrasion, while Type III cement concrete showed a similar strength, but lower resistance to wear, when compared to those of the Type V cement concrete.


2022 ◽  
Vol 12 (2) ◽  
pp. 889
Author(s):  
Marek Milanowski ◽  
Alaa Subr ◽  
Stanisław Parafiniuk

The use of worn-out agricultural nozzles in pesticide application has a negative effect on the efficiency and cost of the application process. It also has an effect on environmental pollution due to an excessive amount of pesticide being applied when spraying with worn-out nozzles. In this paper, the resistance to wear of three different internal design hydraulic nozzles was ascertained. Changes in the flow rate and spray distribution as a result of this wear were also investigated. The wear test was done inside a closed system, and it was accelerated using an abrasive material to generate 100 h of wear. The tested nozzles were the Turbo TeeJet (TT)-twin chambered, Turbo Twinjet (TTj60)-dual outlet, and Drift Guard (DG)-pre-orifice. Wear rate, flow rate, and the virtual coefficient of variation (CVv) were measured at different wear intervals. The results showed that the TTj60 type was the most resistant to wear, followed by the TT type and DG. The latter two types showed an increase in the flow rate only in the first 45 h of wear. Virtual coefficient of variation (CVv) values were less than 10% after finishing the test (after 100 h of wear) for the three types of nozzles, which are acceptable values according to International Organization for Standardization (ISO) 16122-2, 2015.


1980 ◽  
Vol 8 (1) ◽  
pp. 10-12
Author(s):  
F. C. Brenner

Abstract Tread wear rates during first wear measured by groove depth and weight changes do not always agree. Sometimes, the groove depth method shows a high rate and the weight loss method a low rate. Reported here are experiments designed to determine if grooves show depth changes without wear. Four tires were measured before mounting on a wheel, after mounting and inflation, and after inflation and storage. The mounted and inflated tires showed shallower shoulder grooves and deeper center grooves than the unmounted tires. In a second experiment, tires were measured immediately after a tread wear test and then stored mounted for two weeks before remeasuring. Each groove became deeper, and there was no change in the crown radius of any tire.


Alloy Digest ◽  
1953 ◽  
Vol 2 (9) ◽  

Abstract AFCOMET 40 is a dense, close-grained nickel-molybdenum cast iron with good resistance to wear and abrasion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-2. Producer or source: Atlas Foundry Company.


Alloy Digest ◽  
1976 ◽  
Vol 25 (3) ◽  

Abstract AMPCOLOY 83 is a wrought copper-base alloy containing nominally 1.8% beryllium. It offers good formability in the unhardened condition and can be strengthened by precipitation hardening. It has a combination of high strength and hardness, good ductility, good electrical and thermal conductivity, excellent resistance to wear and fatigue, and high resistance to general corrosion. Among its many uses are components for resistance welding, bushings and shafts. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-310. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1969 ◽  
Vol 18 (2) ◽  

Abstract BRUSII Alloy 200C is a beryllium-nickel casting alloy having high resistance to wear, corrosion, thermal shock and oxidation. It is recommended for fuel pump impellers, turbines, non-sparking tools, molds for plastics and glass. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: Ni-142. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1979 ◽  
Vol 28 (11) ◽  

Abstract CONSIL 901 is the most commonly used of the silver-copper electrical contact alloys. It has higher hardness and better resistance to wear than fine silver. It is used widely for light and medium-duty applications involving electrical-contact devices. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on corrosion resistance as well as casting, forming, heat treating, joining, and surface treatment. Filing Code: Ag-9. Producer or source: Handy & Harman.


Alloy Digest ◽  
1966 ◽  
Vol 15 (6) ◽  

Abstract Copper Alloy No. 172 is a precipitation hardening beryllium-copper alloy having high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear, and high resistance to general corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-165. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


Alloy Digest ◽  
1969 ◽  
Vol 18 (4) ◽  

Abstract Ultradie 3 is a high production tool and die steel of the high-carbon high-chromium type. It is deep hardening, non-deforming, and has high resistance to wear and compression. It is recommended for heavy duty tools and dies. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and bend strength as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-218. Producer or source: Cyclops Corporation.


Sign in / Sign up

Export Citation Format

Share Document