scholarly journals Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12

Author(s):  
Douglas B. Chambers ◽  
Mark D. Kozar ◽  
Terence Messinger ◽  
Michon L. Mulder ◽  
Adam J. Pelak ◽  
...  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
C. Prakasam ◽  
R. Saravanan ◽  
M. K. Sharma ◽  
Varinder S. Kanwar

AbstractAs the surface water in northern India is the main water resource for regional economic and also supply for drinking and irrigation purposes. However, deficiency of water quality leads to serious water pollution in the Pandoh river basin (PRB). Therefore, the main objective of the present study is to evaluate the quality of surface water. With this objective, surface water samples were collected from the PRB of northern India, and analyzed for pH, EC, turbidity, alkalinity, total dissolved solids, and total hardness. Moreover, geographical information system (GIS) tools were used to prepare the geology, drainage pattern, and location maps of the study region. Surface water quality observed from the PRB has an alkaline nature with a moderately hard type. Further studies are encouraged to better understand the water quality in northern India.


2014 ◽  
Vol 12 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Yilei Yu ◽  
Xianfang Song ◽  
Yinghua Zhang ◽  
Fandong Zheng ◽  
Licai Liu

Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2021 ◽  
Vol 261 ◽  
pp. 04023
Author(s):  
Xu He ◽  
Hou Siyan

The water quality of six important rivers in Haihe River Basin, including Yongding River, Luanhe River, North Canal, Daqing River, South Canal and Chaobai River, was evaluated. The influence of point source and non-point source on water quality was analyzed. The causes of water environmental pollution in the major rivers were preliminarily revealed. The results show that the water quality of Chaobai River is good, and the impact of point source and non-point source discharge on the water body is small. Other rivers are affected by different degrees of point source and non-point source pollution. Based on the analysis results, the engineering measures and management countermeasures for river regulation are put forward.


2021 ◽  
Author(s):  
Kathryn A Gazal ◽  
Kathleen G Arano

Abstract Advancement in drilling technology has increased natural gas extraction activities from the Marcellus shale deposit resulting in a shale gas boom in many regions, including West Virginia. This boom has created a significant labor demand shock to local economies experiencing the boom. A number of studies have shown that a shale gas boom directly increases employment and the income of those working in the industry. However, the boom can also have an adverse impact on other sectors through the resource movement effect and intersector labor mobility, pulling workers away from a related sector like forestry. Thus, an econometric model of employment in the forestry sector was developed to investigate the impact of the Marcellus shale gas boom in West Virginia. There is evidence of a labor movement effect with forestry employment negatively affected by the Marcellus shale boom. Specifically, the overall marginal effect of the shale boom on forestry employment is approximately 435 fewer jobs. However, the extent of the decline is slightly moderated by a higher relative wage between gas and forestry, perhaps suggesting diminishing returns and overall slack in the local labor market. Study Implications Although a Marcellus shale gas boom directly increases employment and the income of those working in that industry, it can have an adverse impact on other sectors by pulling workers away from a related sector like forestry. This study showed that employment in the West Virginia forestry sector was negatively affected by the shale gas boom. An important policy issue is how to manage the cyclical nature of shale gas booms and the negative impacts on other industries with long-term growth potential, like the forestry sector. This sector does not suffer through boom-and-bust cycles, making it important for long-term economic stability.


Author(s):  
Tamara I. Ivahnenko ◽  
John J. Renton ◽  
Henry W. Rauch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document