scholarly journals The role of SnO2 high resistivity transparent layer deposited onto commercial conducting glass as front contact in superstrate configuration thin films solar cells technology: influence of the deposition technique

2019 ◽  
Vol 65 (5 Sept-Oct) ◽  
pp. 554
Author(s):  
C.A. Hernández-Gutiérrez ◽  
O. Vigil Galán ◽  
S. Melo ◽  
E. Rodriguez ◽  
Yu Kudriavtsev

The deposition of a high resistivity transparent (HRT) oxide between a transparent conductive oxide (TCO) and the window CdS has demonstrated the improvement of performance of CdS/CdTe solar cells, fabricated in the superstrate-configuration.  In this work the influence of the pneumatic spray pyrolysis (PSP) and magnetron sputtering techniques on the properties TCO/SnO2/CdS structure through the deposition of the intermediate SnO2 between the commercial conducting glass and CdS window is presented by means of X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and contact resistance, calculated using transmission line method (TLM), in order to reduce the front contact resistance in devices with superstrate-configuration. The results of this work are applicable to other solar cells in the same configuration as the recent solar cells based on the compound Sb2Se3, where the use of this type of HRT has not been studied.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sajid U. Khan ◽  
Johan E. ten Elshof

Eu3+-doped LaPO4and Tb3+-doped CePO4luminescent nanoparticles embedded in hybrid organosilica were patterned by two soft lithographic techniques. The role of various parameters such as solution chemistry, thermal protocols, and modification of the mold-substrate surface energies related to pattern shape formation and adhesion to the substrates have been studied. The shrinkage of the oxide patterns and shape evolution during the process was also examined. The patterns were characterized with optical and photoluminescence (PL) microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Compositional analyses were carried out with X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and secondary ion mass spectroscopy (SIMS). The results indicated that the final patterns obtained with these two techniques for the same material have different shapes and adherence to the substrates.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Tingliang Liu ◽  
Xing Zhang ◽  
Jingquan Zhang ◽  
Wenwu Wang ◽  
Lianghuan Feng ◽  
...  

Transparent ITO/ZnO and ITO/SnO2complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS), and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV), which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase ofEff, FF,Voc, andIscby the introduction of ITO/ZnO and ITO/SnO2layers in CdTe solar cells.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Nikola Papež ◽  
Rashid Dallaev ◽  
Pavel Kaspar ◽  
Dinara Sobola ◽  
Pavel Škarvada ◽  
...  

This work is dedicated to the description of the degradation of GaAs solar cells under continuous laser irradiation. Constant and strong exposure of the solar cell was performed over two months. Time-dependent electrical characteristics are presented. The structure of the solar cells was studied at the first and last stages of degradation test. The data from Raman spectroscopy, reflectometry, and secondary ion mass spectrometry confirm displacement of titanium and aluminum atoms. X-ray photoelectron spectroscopy showed a slight redistribution of oxygen bonds in the anti-corrosion coating.


Langmuir ◽  
2012 ◽  
Vol 28 (47) ◽  
pp. 16306-16317 ◽  
Author(s):  
Yolanda S. Hedberg ◽  
Manuela S. Killian ◽  
Eva Blomberg ◽  
Sannakaisa Virtanen ◽  
Patrik Schmuki ◽  
...  

1996 ◽  
Vol 11 (1) ◽  
pp. 229-235 ◽  
Author(s):  
E. Cattaruzza ◽  
R. Bertoncello ◽  
F. Trivillin ◽  
P. Mazzoldi ◽  
G. Battaglin ◽  
...  

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.


1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


Sign in / Sign up

Export Citation Format

Share Document