From IDDQ Fault Detection to Defect Localization in Logic CMOS Integrated Circuits: Key Issues

Author(s):  
Philippe Perdu ◽  
Romain Desplats

Abstract IDDQ testing detects a majority of faults in logic ICs. To improve defect coverage with very short test patterns, IDDQ testing has been integrated in fault simulators embedded with automatic test pattern generation (ATPG) algorithms. Nevertheless, for failure analysis purposes, this progress has not eliminated the complex task of fault isolation at the silicon level of ICs. Defect localization is facilitated with IDDQ testing because the defect is detected as soon as it is activated inside the device. At the failed vector, abnormal IDDQ current is measured and accurate localization of the corresponding defect inside the chip can be performed. Thermally related techniques or emission microscopy can be used for this localization process. Very powerful tools like electron beam testers can also be used to deeply analyze faulty devices by internal contactless testing. In this paper, we will present an application of IDDQ testing for fault detection and some key issues regarding localization of the corresponding defect: • Appropriate techniques, • Switching from electrical testing to fault localization, • Modifying the test pattern to shorten the localization process, • Constructing a localization method based on an IDDQ diagnostic.

Author(s):  
Romain Desplats ◽  
Philippe Perdu ◽  
Jamel Benbrik ◽  
Michel Dupire

Abstract Recent progress with IDDQ testing has demonstrated the ability to identify a majority of defects in logic ICs. IDDQ testing has also been integrated in fault simulators embedded with automatic test pattern generation (ATPG) algorithms to further extend defect coverage. However, this progress has not eliminated the complex task of defect localization on the silicon level of ICs. To deal with the challenge of faster and more accurate defect localization with greater sensitivity, we have developed a new method based on voltage contrast capabilities for internal localization of IDDQ defects. This method covers an extended range of cases: functional or non functional devices, with or without CAD information, etc... Using only the same test pattern as that used to identify a faulty circuit, the equipotential line of the failure can be located. This approach can also be extended to coupling with netlist information. For example, the equipotential line previously found on the faulty circuit can be compared with the fault simulator output. Then, the site of the simulated defect corresponding to the physical failure can be extracted and local deprocessing with a FIB can be used on the failed circuit to physically reveal the defect with an improved turn around time.


Author(s):  
Mayue Xie ◽  
Zhiguo Qian ◽  
Mario Pacheco ◽  
Zhiyong Wang ◽  
Rajen Dias ◽  
...  

Abstract Recently, a new approach for isolation of open faults in integrated circuits (ICs) was developed. It is based on mapping the radio-frequency (RF) magnetic field produced by the defective part fed with RF probing current, giving the name to Space Domain Reflectometry (SDR). SDR is a non-contact and nondestructive technique to localize open defects in package substrates, interconnections and semiconductor devices. It provides 2D failure isolation capability with defect localization resolution down to 50 microns. It is also capable of scanning long traces in Si. This paper describes the principles of the SDR and its application for the localization of open and high resistance defects. It then discusses some analysis methods for application optimization, and gives examples of test samples as well as case studies from actual failures.


Author(s):  
Kevin Gearhardt ◽  
Chris Schuermyer ◽  
Ruifeng Guo

Abstract This paper presents an iterative diagnosis test generation framework to improve logic fault diagnosis resolution. Industrial examples are presented in this paper on how additional targeted pattern generation can be used to improve defect localization before physical failure analysis of a die. This enables failure analysts to be more effective by reducing the dependence on the more expensive physical fault isolation techniques.


Author(s):  
Seth J. Prejean ◽  
Joseph Shannon

Abstract This paper describes improvements in backside deprocessing of CMOS (Complimentary Metal Oxide Semiconductor) SOI (Silicon On Insulator) integrated circuits. The deprocessing techniques described here have been adapted from a previous research publication on backside deprocessing of bulk CMOS integrated circuits [1]. The focus of these improvements was to provide a repeatable and reliable methodology of deprocessing CMOS devices from the backside. We describe a repeatable and efficient technique to deprocess flip chip packaged devices and unpackaged die from the backside. While this technique has been demonstrated on SOI and bulk devices, this paper will focus on the latest SOI technology. The technique is useful for quick and easy access to the transistor level while preserving the metal interconnects for further analysis. It is also useful for deprocessing already thinned or polished die without removing them from the package. Removing a thin die from a package is very difficult and could potentially damage the device. This is especially beneficial when performing physical failure analysis of samples that have been back thinned for the purpose of fault isolation and defect localization techniques such as: LIVA (Laser Induced Voltage Alteration), TIVA (Thermally Induce Voltage Alteration), SDL [2] (Soft Defect Localization), and TRE (Time Resolved Emission) analysis. An important fundamental advantage of deprocessing SOI devices is that the BOX (Buried Oxide) layer acts as a chemical etch stop when etching the backside or bulk silicon. This leaves the transistor active silicon intact for analysis. Further delayering allows for the inspection of the active silicon, gate oxide, silicide, spacers, and poly. After deprocessing the transistor level, the metal layers are still intact and, in most cases, still electrically connected to the outside world. This can provide additional failure analysis opportunities.


Author(s):  
Haonan Bai ◽  
Lan Yin Lee ◽  
Yang Jing ◽  
Peter Floyd Salinas ◽  
Kok Keng Chua

Abstract Failure analysis and defect localization on 28nm All Programmable Zynq System-on-Chip (SoC) device is extremely challenging. While conventional FPGA, which only consists of the Programmable Logic, has greater ease and flexibility in pattern generation during fault isolation, the all programmable SoC device integrates a dual ARM Cortex-A9 cores with Programmable Logic (PL) in a single chip. The cache data access in-between processor and PL is more complex and test methodology has lesser degree of control on cache data flow and stack sequence. This paper introduced an advanced fault isolation test methodology combining Software Development Kit (SDK) with scan based diagnostic test for cache failures. It successfully pinpoint to failure locations with physical defects found. As conventional physical failure analysis approaches using SEM based passive voltage contrast could not observe any abnormalities, current imaging and nano-probing measurement using AFP played critical roles in detecting nano-ampere leakages prior subsequent TEM analysis. The findings were then feedback to the foundry for process improvement. Furthermore, a new screening methodology is innovated where an extreme low-voltage test at high temperature in Automatic Test to detect and eliminate the process marginal leakage failure.


2014 ◽  
Vol 904 ◽  
pp. 277-281
Author(s):  
Jian Wen Lian ◽  
Xiao Ling Lin ◽  
Ruo He Yao

With the increasing integration and complexity of microelectronic devices, fault isolation has been challenged. Photon Emission Microscopy (PEM) and Optical Beam Induced Resistance Change (OBIRCH) are effective tools for defect localization and fault characterization in failure analysis. In this paper, the principles and different application condition of PEM and OBIRCH are discussed. PEM is very helpful for locating defects emitting photon, but can not detect the defects which have no photon emitting, such as shorted metal interconnects; OBIRCH as a complementary, has a high success rate for locating resistance defects. Two cases with failure mechanisms illuminated are presented to show the different application of PEM and OBIRCH.


Author(s):  
Monalisa Mohanty ◽  
S. N. Patnaik

Due to the constant development in the integrated circuits, the automatic test pattern generation problem become more vital for sequential vlsi circuits in these days. Also testing of integrating circuits and systems has become a difficult problem. In this paper we have discussed the problem of the automatic test sequence generation using particle swarm optimization(PSO) and technique for structure optimization of a deterministic test pattern generator using genetic algorithm(GA).


2008 ◽  
Vol 144 ◽  
pp. 214-219
Author(s):  
Vidas Abraitis ◽  
Žydrūnas Tamoševičius

Transition delay testing of sequential circuits in a clocked environment is analyzed. There are presented two test pattern generator methods for built in self testing of the circuit implemented as Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA) of Virtex family. Cellular automaton and Linear Feedback Shift Register (LFSR) structures are used for test sequence generation. The circuits are tested as the black boxes under Transition fault model. Experimental results of the test pattern generation methods are presented and analyzed. Results compared with exhaustive test of transition faults for ASICs and programmable integrated circuits with given configuration.


Sign in / Sign up

Export Citation Format

Share Document