A Novel X-Ray Microtomography System with High Resolution and Throughput for Non-Destructive 3D Imaging of Advanced Packages

Author(s):  
David Scott ◽  
Fred Duewer ◽  
Shashi Kamath ◽  
Alan Lyon ◽  
David Trapp ◽  
...  

Abstract X-ray microscopy has the potential to solve many failure analysis problems associated with advanced package technologies because of its ability to non-destructively inspect advanced multi-layer package designs. In addition, x-ray imaging has the potential to perform fault isolation in 3D using well-established tomographic reconstruction methods. The ability to perform high-resolution, artifact free tomographic reconstructions will be critical to the Advanced Packaging Failure Analysis community. This article discusses the requirements for a high-resolution, three-dimensional tomographic imaging microscope and shows how these requirements pose a problem for conventional projection based x-ray microscopes, specifically the requirement to place the sample in near contact with the x-ray source. The article then discusses the results from the Micro-XCT, an x-ray tomographic imaging microscope designed by Xradia, Inc., whose unique design allows for the required 180 degrees of sample rotation while simultaneously maintaining resolutions as high as 1 micrometer.

Author(s):  
Christian Schmidt ◽  
Stephen T. Kelly ◽  
Ingrid De Wolf

Abstract With the growing complexity and interconnect density of modern semiconductor packages, package level FA is also facing new challenges and requirements. 3D X-Ray Microscopy (XRM) is considered a key method to fulfill these requirements and enable high success FA yield. After a short introduction into the basic principles of lab-based X-Ray tomography, 2 different approaches of X-Ray investigations are discussed and an integration into the daily FA flow is proposed. In the first example, fault isolation on a fully packaged device is demonstrated using a stacked die device. In the second example, a newly developed sample preparation flow in combination with Nanoscale 3D X-Ray Microscopy for Chip-Package-Interaction and Back-end-of-line feature imaging is introduced.


2021 ◽  
Vol 11 (17) ◽  
pp. 8148
Author(s):  
Yuan Chen ◽  
Ping Lai ◽  
Hong-Zhong Huang ◽  
Peng Zhang ◽  
Xiaoling Lin

With the development of 3D integrated packaging technology, failure analysis is facing more and more challenges. Defect localization in a 3D package is a key step of failure analysis. The complex structure and materials of 3D package devices demand non-destructive defect localization technology for full packages. Magnetic field imaging and three-dimensional X-ray technology are not affected by package material or form. They are effective methods to realize defect localization on 3D packages. In this paper, magnetic field imaging and high-resolution three-dimensional X-ray microscopy were used to localize the open defect in a 3D package with a TSV daisy chain. A two-probe RF method in magnetic field imaging was performed to resolve isolation of the defect difficulties resulting from many different branches of TSV daisy chains. Additionally, a linear decay method was used to target sub-micron resolution at a long working distance. Multiple partition scans from a high-resolution 3D X-ray microscopy with a two-stage magnification structure were used to achieve sub-micron resolution. The open location identified by magnetic field imaging was consistent with that identified by a three-dimensional X-ray microscope. The opening was located on the top metal in the proximity of the fifth via. Physical failure analysis revealed the presence of a crack in the top metal at the opening location.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
Wenbing Yun ◽  
Steve Wang ◽  
David Scott ◽  
Kenneth W. Nill ◽  
Waleed S. Haddad

Abstract A high-resolution table-sized x-ray nanotomography (XRMT) tool has been constructed that shows the promise of nondestructively imaging the internal structure of a full IC stack with a spatial resolution better than 100 nm. Such a tool can be used to detect, localize, and characterize buried defects in the IC. By collecting a set of X-ray projections through the full IC (which may include tens of micrometers of silicon substrate and several layers of Cu interconnects) and applying tomographic reconstruction algorithms to these projections, a 3D volumetric reconstruction can be obtained, and analyzed for defects using 3D visualization software. XRMT is a powerful technique that will find use in failure analysis and IC process development, and may facilitate or supplant investigations using SEM, TEM, and FIB tools, which generally require destructive sample preparation and a vacuum environment.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


1988 ◽  
Vol 21 (4) ◽  
pp. 429-477 ◽  
Author(s):  
W. Kühlbrandt

As recently as 10 years ago, the prospect of solving the structure of any membrane protein by X-ray crystallography seemed remote. Since then, the threedimensional (3-D) structures of two membrane protein complexes, the bacterial photosynthetic reaction centres of Rhodopseudomonas viridis (Deisenhofer et al. 1984, 1985) and of Rhodobacter sphaeroides (Allen et al. 1986, 1987 a, 6; Chang et al. 1986) have been determined at high resolution. This astonishing progress would not have been possible without the pioneering work of Michel and Garavito who first succeeded in growing 3-D crystals of the membrane proteins bacteriorhodopsin (Michel & Oesterhelt, 1980) and matrix porin (Garavito & Rosenbusch, 1980). X-ray crystallography is still the only routine method for determining the 3-D structures of biological macromolecules at high resolution and well-ordered 3-D crystals of sufficient size are the essential prerequisite.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

Author(s):  
S. Kolokytha ◽  
R. Speller ◽  
S. Robson

This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.


Sign in / Sign up

Export Citation Format

Share Document