Use of 3D X-Ray Microscopy for BEOL and Advanced Packaging Failure Analysis

Author(s):  
Christian Schmidt ◽  
Stephen T. Kelly ◽  
Ingrid De Wolf

Abstract With the growing complexity and interconnect density of modern semiconductor packages, package level FA is also facing new challenges and requirements. 3D X-Ray Microscopy (XRM) is considered a key method to fulfill these requirements and enable high success FA yield. After a short introduction into the basic principles of lab-based X-Ray tomography, 2 different approaches of X-Ray investigations are discussed and an integration into the daily FA flow is proposed. In the first example, fault isolation on a fully packaged device is demonstrated using a stacked die device. In the second example, a newly developed sample preparation flow in combination with Nanoscale 3D X-Ray Microscopy for Chip-Package-Interaction and Back-end-of-line feature imaging is introduced.

Author(s):  
David Scott ◽  
Fred Duewer ◽  
Shashi Kamath ◽  
Alan Lyon ◽  
David Trapp ◽  
...  

Abstract X-ray microscopy has the potential to solve many failure analysis problems associated with advanced package technologies because of its ability to non-destructively inspect advanced multi-layer package designs. In addition, x-ray imaging has the potential to perform fault isolation in 3D using well-established tomographic reconstruction methods. The ability to perform high-resolution, artifact free tomographic reconstructions will be critical to the Advanced Packaging Failure Analysis community. This article discusses the requirements for a high-resolution, three-dimensional tomographic imaging microscope and shows how these requirements pose a problem for conventional projection based x-ray microscopes, specifically the requirement to place the sample in near contact with the x-ray source. The article then discusses the results from the Micro-XCT, an x-ray tomographic imaging microscope designed by Xradia, Inc., whose unique design allows for the required 180 degrees of sample rotation while simultaneously maintaining resolutions as high as 1 micrometer.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
Gwee Hoon Yen ◽  
Ng Kiong Kay

Abstract Today, failure analysis involving flip chip [1] with copper pillar bump packaging technologies would be the major challenges faced by analysts. Most often, handling on the chips after destructive chemical decapsulation is extremely critical as there are several failure analysis steps to be continued such as chip level fault localization, chip micro probing for fault isolation, parallel lapping [2, 3, 4] and passive voltage contrast. Therefore, quality of sample preparation is critical. This paper discussed and demonstrated a quick, reliable and cost effective methodology to decapsulate the thin small leadless (TSLP) flip chip package with copper pillar (CuP) bump interconnect technology.


Author(s):  
Jason H. Lagar ◽  
Rudolf A. Sia

Abstract Most Wafer Level Chip Scale Package (WLCSP) units returned by customers for failure analysis are mounted on PCB modules with an epoxy underfill coating. The biggest challenge in failure analysis is the sample preparation to remove the WLCSP device from the PCB without inducing any mechanical defect. This includes the removal of the underfill material to enable further electrical verification and fault isolation analysis. This paper discusses the evaluations conducted in establishing the WLCSP demounting process and removal of the epoxy underfill coating. Combinations of different sample preparation techniques and physical failure analysis steps were evaluated. The established process enabled the electrical verification, fault isolation and further destructive analysis of WLCSP customer returns mounted on PCB and with an epoxy underfill coating material. This paper will also showcase some actual full failure analysis of WLCSP customer returns where the established process played a vital role in finding the failure mechanism.


Author(s):  
Swaminathan Subramanian ◽  
Khiem Ly ◽  
Tony Chrastecky

Abstract Visualization of dopant related anomalies in integrated circuits is extremely challenging. Cleaving of the die may not be possible in practical failure analysis situations that require extensive electrical fault isolation, where the failing die can be submitted of scanning probe microscopy analysis in various states such as partially depackaged die, backside thinned die, and so on. In advanced technologies, the circuit orientation in the wafer may not align with preferred crystallographic direction for cleaving the silicon or other substrates. In order to overcome these issues, a focused ion beam lift-out based approach for site-specific cross-section sample preparation is developed in this work. A directional mechanical polishing procedure to produce smooth damage-free surface for junction profiling is also implemented. Two failure analysis applications of the sample preparation method to visualize junction anomalies using scanning microwave microscopy are also discussed.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001078-001083 ◽  
Author(s):  
K. Fahey ◽  
R. Estrada ◽  
L. Mirkarimi ◽  
R. Katkar ◽  
D. Buckminster ◽  
...  

This paper describes the utilization of non-destructive imaging using 3D x-ray microscopy for package development and failure analysis. Four case studies are discussed to explain our methodology and its impact on our advanced packaging development effort. Identifying and locating failures embedded deep inside the package, such as a solder fatigue failure within a flip chip package, without the need for physical cross-sectioning is of substantial benefit because it preserves the package for further analysis. Also of utility is the ability to reveal the structural details of the package while producing superior quality 2D and volumetric images. The technique could be used not only for analysis of defects and failures, but also to characterize geometries and morphologies during the process and package development stage.


2021 ◽  
Author(s):  
Kuang-Tse Ho ◽  
Cheng-Che Li

Abstract This research summarizes failure analysis results about ionimplantation related issues in Si-based power devices, including diode, MOSFET and IGBT. To find out this kind of defects, sample preparation, fault isolation and SCM inspection are critical steps, which will be explained in detail in this paper.


Author(s):  
Gil Garteiz ◽  
Javeck Verdugo ◽  
David Aveline ◽  
Eric Williams ◽  
Arvid Croonquist ◽  
...  

Abstract In this paper, a failure analysis case study on a custom-built vacuum enclosure is presented. The enclosure’s unique construction and project requirement to preserve the maximum number of units for potential future use in space necessitated a fluorocarbon liquid bath for fault isolation and meticulous sample preparation to preserve the failure mechanism during failure analysis.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Jeffery Huynh ◽  
Joseph Tan ◽  
Meng-Yeow Tay ◽  
...  

Abstract This paper describes the application of lock-in thermography (LIT) for flip-chip package-level failure analysis. LIT successfully detected and localized short failures related to both die/C4 bumps and package defects inside the organic substrate. The detail sample preparation to create short defects at different layers, LIT fault isolation methodology, and case studies performed with LIT are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document