3-D Defect Characterization using Plan View and Cross-Sectional TEM/STEM Analysis

Author(s):  
Terrence J. Stark ◽  
Phillip E. Russell ◽  
Corey Nevers

Abstract The primary objectives of failure analysis on structurally complex semiconductor devices are often to determine a defect's location and composition. Determining exactly how these defects propagate through a sample in three dimensions, to confirm a failure mode, is often elusive. This paper discusses characterizations of two defect types to illustrate a technique of sequentially imaging whisker type defects from orthogonal orientations using TEM/STEM. The first type is a high resistance short between two metal lines that is best imaged using STEM in order to observe subtle differences in material composition. The second is a crystalline dislocation through an optoelectronic device that is best observed using TEM. Details of resistive short characterization and crystalline defect characterization performed are provided. TEM/STEM has shown to be a practical tool for locating defects prior to cross sectional analysis. This allows defects to be located and characterized in three dimensions.

Author(s):  
Daminda H. Dahanayaka ◽  
Daniel A. Bader ◽  
Dennis P. Prevost ◽  
Michael T. Coster ◽  
Erik F. Mccullen ◽  
...  

Abstract Physical failure analysis of nanoelectronic devices is typically performed using plan view or cross-sectional TEM, SEM or SPM techniques. While plan view SPM and SEM analyses are limited by the depth sensitivity of the technique, cross-sectional analysis requires at least approximate localization of the fail location within the device for effective sample preparation. Multi-finger wide 2D planar devices and multi-FIN 3D devices are structures which require an additional step in pinpointing the fail area within the device. This paper describes successful use of EBIC/EBAC techniques to localize the fail location within such devices in both the 22 nm and 14 nm technology nodes.


Author(s):  
S.R. Glanvill

This paper summarizes the application of ultramicrotomy as a specimen preparation technique for some of the Materials Science applications encountered over the past two years. Specimens 20 nm thick by hundreds of μm lateral dimension are readily prepared for electron beam analysis. Materials examined include metals, plastics, ceramics, superconductors, glassy carbons and semiconductors. We have obtain chemical and structural information from these materials using HRTEM, CBED, EDX and EELS analysis. This technique has enabled cross-sectional analysis of surfaces and interfaces of engineering materials and solid state electronic devices, as well as interdiffusion studies across adjacent layers.Samples are embedded in flat embedding moulds with Epon 812 epoxy resin / Methyl Nadic Anhydride mixture, using DY064 accelerator to promote the reaction. The embedded material is vacuum processed to remove trapped air bubbles, thereby improving the strength and sectioning qualities of the cured block. The resin mixture is cured at 60 °C for a period of 80 hr and left to equilibrate at room temperature.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2020 ◽  
Vol 29 (2) ◽  
pp. 206-217
Author(s):  
Jianyuan Ni ◽  
Monica L. Bellon-Harn ◽  
Jiang Zhang ◽  
Yueqing Li ◽  
Vinaya Manchaiah

Objective The objective of the study was to examine specific patterns of Twitter usage using common reference to tinnitus. Method The study used cross-sectional analysis of data generated from Twitter data. Twitter content, language, reach, users, accounts, temporal trends, and social networks were examined. Results Around 70,000 tweets were identified and analyzed from May to October 2018. Of the 100 most active Twitter accounts, organizations owned 52%, individuals owned 44%, and 4% of the accounts were unknown. Commercial/for-profit and nonprofit organizations were the most common organization account owners (i.e., 26% and 16%, respectively). Seven unique tweets were identified with a reach of over 400 Twitter users. The greatest reach exceeded 2,000 users. Temporal analysis identified retweet outliers (> 200 retweets per hour) that corresponded to a widely publicized event involving the response of a Twitter user to another user's joke. Content analysis indicated that Twitter is a platform that primarily functions to advocate, share personal experiences, or share information about management of tinnitus rather than to provide social support and build relationships. Conclusions Twitter accounts owned by organizations outnumbered individual accounts, and commercial/for-profit user accounts were the most frequently active organization account type. Analyses of social media use can be helpful in discovering issues of interest to the tinnitus community as well as determining which users and organizations are dominating social network conversations.


2012 ◽  
Vol 58 (4) ◽  
pp. 472-476 ◽  
Author(s):  
Caroline Filla Rosaneli ◽  
Flavia Auler ◽  
Carla Barreto Manfrinato ◽  
Claudine Filla Rosaneli ◽  
Caroline Sganzerla ◽  
...  

2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
M. Zielonka ◽  
S. Garbade ◽  
S. Kölker ◽  
G. Hoffmann ◽  
M. Ries

2019 ◽  
Author(s):  
Patricia Clark ◽  
Annarella Barbato ◽  
Miguel Angel Guagnelli ◽  
Jose Alberto Rascon ◽  
Edgar Denova ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2174-PUB
Author(s):  
NARAYANAN NK ◽  
CS DWARAKANATH ◽  
VENKATARAMAN S ◽  
MANIKANDAN RM ◽  
NARENDRA BS ◽  
...  

Author(s):  
J.S. McMurray ◽  
C.M. Molella

Abstract Root cause for failure of 90 nm body contacted nFETs was identified using scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM). The failure mechanism was identified using both cross sectional imaging and imaging of the active silicon - buried oxide (BOX) interface in plan view. This is the first report of back-side plan view SCM and SSRM data for SOI devices. This unique plan view shows the root cause for the failure is an under doped link up region between the body contacts and the active channel of the device.


Author(s):  
B. Domengès ◽  
P. Poirier

Abstract In this study, the resistance of FIB prepared vias was characterized by the Kelvin probe technique and their physical characteristics studied using cross-sectional analysis. Two domains of resistivity were isolated in relation to the ion beam current used for the deposition of the via metal (Pt). Also submicrometer vias were investigated on 4.2 µm deep metal lines of a BiCMOS aluminum based design and a CMOS 090 copper based one. It is shown that the controlling parameter is the shape and volume of the contact, and that the contact formation is favored by the amount of over-mill of the via into the metal line it will contact.


Sign in / Sign up

Export Citation Format

Share Document