High Frequency Signal Propagation in Through Silicon Vias

2012 ◽  
Vol 2012 (1) ◽  
pp. 000239-000243
Author(s):  
Srinidhi Raghavan Narasimhan ◽  
A. Ege Engin

The 3D IC integration technology and silicon interposers rely on through silicon vias (TSVs) for vertical interconnections. Hence, the medium carrying high frequency signals is lossy silicon (Si). Fundamental understanding of wave propagation through TSVs is essential for successful implementation of 3D IC integration technology as well as for the development of Si interposers at RF/microwave frequencies. The focus of this paper is characterization and modelling of TSVs and Si to explore high speed signal propagation through the lossy Si medium. To understand better the physical significance of the TSV, we will establish a framework for wave propagation through TSVs based on dielectric quasi-TEM, skin effect, and slow-wave modes similar to MIS micro-strip lines. For validation of the existence of these modes, full wave simulation results will be compared with simpler two dimensional transmission line simulators.

2013 ◽  
Vol 2013 (1) ◽  
pp. 000228-000232
Author(s):  
Min Xu ◽  
Robert Geer ◽  
Pavel Kabos ◽  
Thomas Wallis

High frequency signal transmission through silicon substrates is critical for 3D heterogeneous integration. This paper presented fabrication, testing, and simulation of high-frequency interconnects based on through-silicon vias (TSVs) and coplanar waveguides (CPWs) for stacked 3D integrated circuits (3D ICs). Our simulation results showed that adding ground TSVs can improve signal transmission by 6× at 50GHz. We further investigated signal/ground TSV (1SXG) configurations for high-bandwidth signal transmission links. Scattering parameter measurements of fabricated 1SXG TSV structures for frequencies from 100MHz to 50GHz show low insertion loss (S21 less than −1dB up to 50GHz) and return loss (S11 lower than −15dB). These results indicate that these vertical interconnects exhibit good performance for high speed signal transmission. To understand the RF signal transmission in 3D interconnects, we used full wave electromagnetic simulation to investigate the electromagnetic field distribution associated with the ground TSV placement. We observed that the ground TSVs induced substantial overall field confinement, consistent with the experimental observation of improved signal transmission. Simulations also provided design guidance with respect to the substrate conductivity's impact on EM confinement and signal transmission.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001221-001228 ◽  
Author(s):  
Jui-Feng Hung ◽  
John H. Lau ◽  
Peng-Shu Chen ◽  
Shih-Hsien Wu ◽  
Sheng-Che Hung ◽  
...  

In this study, the electrical performance of a general TSV structure for high-frequency 3D IC integration applications is investigated. Emphasis is placed on the proposal of an analytical model and the analytical equations of a TSV with all its key parameters. Also, the model and equations are verified, both in the frequency and time domains, by more detailed finite element analyses. Finally, a TSV electrical design guideline is proposed.


Author(s):  
Valentina Korchnoy ◽  
Jacov Brener

Abstract High frequency signal propagation through transmission lines has been an important discipline for RF engineers. With advancements in digital technologies, especially when data rates reached multiple Gb/s, package designers have to consider parameters such as transmission loss and trace impedance in order to maintain signal integrity. For high frequency signals, the surface roughness of the copper trace becomes increasingly significant in determining conduction loss, due to current confinement to the conductor surface by the skin effect. Accurate 3D conductor surface maps are required for correct trace insertion loss simulation. Practical methods for package trace exposure and 3D surface height map acquisition are discussed in this paper. Advantages and disadvantages of these methods, and their implementation to real packages are shown. Using electrical parameters resulting from a 3D trace surface map, the error between electrical simulations and actual measurements of insertion loss in an FCBGA package have been reduced from 6% to nearly zero, enabling tighter margins in 10GB/s high speed serial design.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000001-000007
Author(s):  
Chien-Ying Wu ◽  
Shang-Chun Chen ◽  
Pei-Jer Tzeng ◽  
John H. Lau ◽  
Yi-Feng Hsu ◽  
...  

In this study, key enabling technologies such as the oxide liner by the PECVD, the barrier and seed layers by the PVD, and Cu-plating of blind TSVs on 300mm wafers for 3D integration are investigated. Emphases are placed on the determination and optimization of the important parameters for each of the key enabling technologies. Also, leakage currents of the fabricated Cu-filled TSVs are measured. Furthermore cross sections and SEM of the fabricated TSVs are provided and examined.


2013 ◽  
Vol 753-755 ◽  
pp. 1405-1408
Author(s):  
Hua Cai Lu ◽  
Xuan Yu Yao ◽  
Juan Ti

This paper describes a composite sensorless position and speed detection algorithm designed for permanent magnet linear synchronous motor (PMLSM). A high-frequency voltage signal injection method is used at starting and low speed, and a back-EMF integrate method is used at high speed, and the two kinds of method are fused by weighting method in the transition speed area. Simulation results show that estimation accuracy of this composite estimation method is satisfactory, and the sensorless control system based on this method has good dynamic response characteristics within full speed.


Sign in / Sign up

Export Citation Format

Share Document