EBIC and XTEM Analysis of High Voltage SMOS Reliability Failures

2002 ◽  
Vol 716 ◽  
Author(s):  
Larry Rice

AbstractMicroscopists are faced with many challenges in locating and examining failure sites in the ever-shrinking semiconductor device. The site must be located using electrical characterization techniques like electron beam induced current (EBIC), photo emission microscopy (PEM) or liquid crystal (LC) and then cross-sectioned with a focused ion beam (FIB). Both PEM and LC require the semiconductor circuit to be running near operating conditions which has been observed to locally melt the area of interest, frequently destroying evidence of the failure mechanism. In contrast, EBIC typically can be accomplished at low or no applied voltage eliminating further damage to the circuit. EBIC has been applied to locate leakage sites in high voltage metal oxide semiconductor (MOS) electro static discharge (ESD) reliability failures. In addition to a brief revisit of the basic principles of EBIC and describing a technique to successfully cross section ‘hot spots’ for transmission electron microscopy (TEM) observation, focus will be placed on a case study of the reliability testing failure analysis of ESD power transistors using EBIC, SEM, focused ion beam (FIB), and XTEM.

Author(s):  
Q. Liu ◽  
H.B. Kor ◽  
Y.W. Siah ◽  
C.L. Gan

Abstract Dual-beam focused ion beam (DB-FIB) system is widely used in the semiconductor industry to prepare cross-sections and transmission electron microscopy (TEM) lamellae, modify semiconductor devices and verify layout. One of the factors that limits its success rate is sample charging, which is caused by a lack of conductive path to discharge the accumulated charges. In this paper, an approach using an insitu micromanipulator was investigated to alleviate the charging effects. With this approach, a simple front side semiconductor device modification was carried out and the corresponding stage current was monitored to correlate to the milling process.


2013 ◽  
Vol 19 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Henrik Pettersson ◽  
Samira Nik ◽  
Jonathan Weidow ◽  
Eva Olsson

AbstractA method that enables high precision extraction of transmission electron microscope (TEM) specimens in low contrast materials has been developed. The main idea behind this work is to produce high contrast markers on both sides of and close to the area of interest. The markers are filled during the depositing of the protective layer. The marker material can be of either Pt or C depending on which one gives the highest contrast. It is thereby possible to distinguish the location of the area of interest during focused ion beam (FIB) milling and ensure that the TEM sample is extracted precisely at the desired position. This method is generally applicable and enables FIB/scanning electron microscope users to make high quality TEM specimens from small features and low contrast materials without a need for special holders. We explain the details of this method and illustrate its potential by examples from three different types of materials.


2000 ◽  
Vol 6 (S2) ◽  
pp. 528-529
Author(s):  
C. Urbanik Shannon ◽  
L. A. Giannuzzi ◽  
E. M. Raz

Automated specimen preparation for transmission electron microscopy has the obvious advantage of saving personnel time. While some people may perform labor intensive specimen preparation techniques quickly, automated specimen preparation performed in a timely and reproducible fashion can significantly improve the throughput of specimens in an industrial laboratory. The advent of focused ion beam workstations for the preparation of electron transparent membranes has revolutionized TEM specimen preparation. The FIB lift-out technique is a powerful specimen preparation method. However, there are instances where the “traditional” FIB method of specimen preparation may be more suitable. The traditional FIB method requires that specimens must be prepared so that the area of interest is as thin as possible (preferably less than 50 μm) prior to FIB milling. Automating the initial specimen preparation for brittle materials (e.g., Si wafers) may be performed using the combination of cleaving and sawing techniques as described below.


2001 ◽  
Vol 7 (S2) ◽  
pp. 956-957
Author(s):  
S. Rubanov ◽  
P.R. Munroe

The technique for the preparation of specimens for transmission electron microscopy (TEM) using the focused ion beam (FIB) miller typically consists of a series of milling steps performed over both sides of an area of interest until an electron transparent membrane is achieved [1]. This process is often accompanied by the formation of damage layers on the surfaces of the specimen. The origins of any damage layer are still not clear. On one hand the process of amorphisation of the target material by the highly energetic ion beam is well known. Alternatively, other workers have reported that this damage layer can be connected with redeposition of milled material. [2,3]. in this paper we have studied redeposition effects during FIB milling of silicon TEM specimens.A FEI xP200 FIB system with a Ga+ ion source operating at 30 kV was used in this work. to study redeposition effects a row of trenches on a silicon specimen was milled under different beam currents ranging from 1000 to 6600 pA. The size of such trenches was 15x10 μm wide and 1 μm deep. The specimen was then removed from the FIB and sputter coated with a ∼50-100 nm thick Au film to preserve the trench surfaces from further damage during subsequent milling. The specimen was then placed back in the FIB system and a second set of trenches 5×8 μm wide and 0.6 μm deep was milled on the bottom of first set of trenches (Fig. 1a). The specimens were sputter coated with Au again and were placed back in the FIB system and the trenches were then covered with 1 μ thick Pt strips using the metal deposition facility of the FIB. The presence of these protection layers (Au and Pt) ensures that the final TEM specimen have unmodified original damage layers resulting from the initial milling steps. Cross-sectional TEM specimens of the trench walls were then prepared using normal FIB procedures (Fig. 1b) [2].


2005 ◽  
Vol 13 (6) ◽  
pp. 40-41
Author(s):  

"The most advantageous feature of the ex-situ lift out method is throughput."A great deal of emphasis is placed on "throughput" in the microprocessor industry. Wafer sizes are getting larger and the costs of building them have increased astronomically. The transmission electron microscope (TEM) has become the essential tool for examining current microprocessor products. The TEM can only be effective if it has properly prepared specimens to put into it. In order to achieve the highest specimen preparation spatial resolution, the microprocessor industry has turned to focused ion beam (FIB) tools, either single or dual column, for TEM specimen preparation in applications ranging from process control to failure analysis, and on to semiconductor device metrology.


2018 ◽  
Author(s):  
J. Demarest ◽  
B. Austin ◽  
J. Arjavac ◽  
M. Breton ◽  
M. Bergendahl ◽  
...  

Abstract Transmission electron microscopy (TEM) sample can be routinely made at a sub 30nm thickness and specific features in semiconductor device design are on the order of 30nm and smaller. As a result, small changes in pattern match registration can significantly influence the success or failure of proper TEM sample placement as an approximately 15nm shift in lamella placement can easily cause the sample to be off the feature of interest. To address this issue, design based recipe writing is being developed on a dual beam focused ion beam platform. The intent is to have the tool read a GDS file and pattern match the design information to physical wafer images in a similar fashion to state-of-the-art critical dimension scanning electron microscopy operation. While the results are very encouraging, more work needs to be done to ensure a TEM sample of approximately 30nm thickness is placed at the desired location.


2009 ◽  
Vol 15 (6) ◽  
pp. 558-563 ◽  
Author(s):  
Herman Carlo Floresca ◽  
Jangbae Jeon ◽  
Jinguo G. Wang ◽  
Moon J. Kim

AbstractWe have developed the focused ion beam (FIB) fold-out technique, for transmission electron microscopy (TEM) sample preparation in which there is no fine polishing or dimpling, thus saving turnaround time. It does not require a nanomanipulator yet is still site specific. The sample wafer is cut to shape, polished down, and then placed in a FIB system. A tab containing the area of interest is created by ion milling and then “folded out” from the bulk sample. This method also allows a plan-view of the sample by removing material below the wafer's surface film or device near the polished edge. In the final step, the sample is thinned to electron transparency, ready to be analyzed in the TEM. With both a cross section and plan-view, our technique gives microscopists a powerful tool in analyzing multiple zone axes in one TEM session. The nature of the polished sample edge also includes the ability to sample many areas, allowing the user to examine a very large device or sample. More importantly, this technique could make multiple site-specific e-beam transparent specimens in one polished sample, which is difficult to do when prepared by other methods.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Sign in / Sign up

Export Citation Format

Share Document