Loop Transformation Algorithm for Test Vector Accessing at High Speed

Author(s):  
Bjorn Dahlberg ◽  
Martin Versen

Abstract Looping on test vectors is a widespread requirement in failure analysis of semiconductor devices. The start of the loop and the number of vectors in the loop can be of critical importance. Present-day vector memory architecture tends to impose restrictions on both due to test speed requirements. A new Vector Loop Transformation algorithm is introduced to remedy the tester constraints.

Author(s):  
LiLung Lai ◽  
Nan Li ◽  
Qi Zhang ◽  
Tim Bao ◽  
Robert Newton

Abstract Owing to the advancing progress of electrical measurements using SEM (Scanning Electron Microscope) or AFM (Atomic Force Microscope) based nanoprober systems on nanoscale devices in the modern semiconductor laboratory, we already have the capability to apply DC sweep for quasi-static I-V (Current-Voltage), high speed pulsing waveform for the dynamic I-V, and AC imposed for C-V (Capacitance-Voltage) analysis to the MOS devices. The available frequency is up to 100MHz at the current techniques. The specification of pulsed falling/rising time is around 10-1ns and the measurable capacitance can be available down to 50aF, for the nano-dimension down to 14nm. The mechanisms of dynamic applications are somewhat deeper than quasi-static current-voltage analysis. Regarding the operation, it is complicated for pulsing function but much easy for C-V. The effective FA (Failure Analysis) applications include the detection of resistive gate and analysis for abnormal channel doping issue.


Author(s):  
Tomokazu Nakai

Abstract Currently many methods are available to obtain a junction profile of semiconductor devices, but the conventional methods have drawbacks, and they could be obstacles for junction profile analysis. This paper introduces an anodic wet etching-based two-dimensional junction profiling method, which is practical, efficient, and reliable for failure analysis and electrical characteristics evaluation.


Author(s):  
Bob Wettermann

Abstract As the pitch and package sizes of semiconductor devices have shrunk and their complexity has increased, the manual methods by which the packages can be re-bumped or reballed for failure analysis have not kept up with this miniaturization. There are some changes in the types of reballing preforms used in these manual methods along with solder excavation techniques required for packages with pitches as fine as 0.3mm. This paper will describe the shortcomings of the previous methods, explain the newer methods and materials and demonstrate their robustness through yield, mechanical solder joint strength and x-ray analysis.


Author(s):  
Charles Zhang ◽  
Matt Thayer ◽  
Lowell Herlinger ◽  
Greg Dabney ◽  
Manuel Gonzalez

Abstract A number of backside analysis techniques rely on the successful use of optical beams in performing backside fault isolation. In this paper, the authors have investigated the influence of the 1340 nm and 1064 nm laser wavelength on advanced CMOS transistor performance.


1998 ◽  
Vol 523 ◽  
Author(s):  
Hong Zhang

AbstractApplication of transmission electron microscopy on sub-half micron devices has been illustrated in terms of process evaluation and failure analysis. For process evaluation, it is emphasized that a large number of features need to be examined in order to have reliable conclusions about the processes, while for failure analysis, the goal is to pin-point a single process step causing failure or a single source introducing the particle defect.


2018 ◽  
Vol 91 ◽  
pp. 496-506 ◽  
Author(s):  
Xi-Yang Liu ◽  
Jin-Fang Peng ◽  
De-Qiang Tan ◽  
Zhi-Biao Xu ◽  
Jian-Hua Liu ◽  
...  

1987 ◽  
Vol 99 ◽  
Author(s):  
Bryan A. Biegel ◽  
R. Singh

ABSTRACTRecent developments in superconductivity have taken 77 K superconducting electronics from a dream to a likelihood. Rather than following the conventional path by developing Josephson junction-based devices, this paper discusses the unique possibilities of hybrid superconductor/semiconductor devices. The two devices discussed are a true three-terminal hybrid resonant tunneling transistor and the semiconductor-coupled Josephson junction. Also, a list is given of as yet uninvestigated issues concerning the new superconductors and their proximity effects with semiconductors -issues that are critical to the operation of these hybrid superconductor/semiconductor devices.


Sign in / Sign up

Export Citation Format

Share Document