Tribomaterials

Author(s):  
Kenneth G. Budinski ◽  
Steven T. Budinski

Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications provides practical information on the tribological behaviors of engineering materials, how they are measured, and how to account for them in order to optimize product lifetime and performance. The first few chapters describe the mechanisms and manifestations of various types of friction, erosion, and wear and how to assess their impact on design and equipment operation using proven tribotesting methods. The chapters that follow cover the tribological properties and characteristics of important engineering materials, including carbon and low-alloy steels, tool steels, stainless steels, nickel- and cobalt-base alloys, copper alloys, and cast iron as well as ceramics, cermets, cemented carbides, polymers, and polymer composites. The book also includes chapters on treatments and coatings, lubrication, and the selection and screening of materials for tribosystems, including medical applications. Each chapter ends with a review of terms, takeaway concepts, essential questions, and related reading. For information on the print version, ISBN: 978-1-62708-321-8, follow this link.

2013 ◽  
Vol 758 ◽  
pp. 41-47
Author(s):  
Fernanda de Souza de Souza Royse ◽  
Ivan Napoleão Bastos ◽  
Hector Reynaldo Meneses Costa

In harsh operational conditions, the low-alloy steels need to be protected from the environment. Thus, against corrosion and wear, an ordinary choice is metallic cladding. In this sense, the present study aimed to evaluate the properties of cobalt base superalloy coating deposited by gas tungsten welding process (GTAW) on steel SAE 4140. A circumferential weld was chosen due to its critical restraint. Four coating conditions were studied varying the welding currents. A microstructural evaluation was done using optical and scanning electron microscopy. The physical properties of coatings were additionally evaluated by microhardness measurement and dilution quantification. The results obtained indicated, for all conditions, a uniformity of layers. However, the deposited weld characteristics are strongly dependent on welding parameters. For the welding parameters studied, the maximum dilution of 60.8% was observed in coatings with austenitic and dendrite microstructures welded with 110 A current. Moreover, the metallographic analysis and microhardness tests showed, for some cases, the presence of partially diluted zone, a microstructural layer in the transition region of base metal and coating. The welding performed with current of 90 A showed the best combination of microhardness and dilution aspects, without defects in coating.


Author(s):  
O. V. Sych ◽  
E. I. Khlusova

The article presents the results of a study of the relationship between strength and performance (temperatures of ductile-brittle transition Tdb and zero plasticity NDT, critical opening at the crack tip CTOD at a test temperature of —40°C) on the structure parameters of thick plate products made of low-carbon low-alloy steels with different contents of basic alloying and microalloying elements. 


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2020 ◽  
Vol 2020 (10) ◽  
pp. 8-21
Author(s):  
A. G. Kolmakov ◽  
◽  
I. O. Bannykh ◽  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
...  

he basic ideas about the process of introducing cores into protective barriers and the most common core patterns and their location in conventional and sub-caliber small arms bullets are discussed. The materials used for manufacture of cores are analyzed. It is concluded that for mass bullets of increased armor penetration the most rational choice can be considered the use of high-carbon low-alloy steels of a new generation with a natural composite structure and hardness of up to 70 HRC. For specialized armor-piercing bullets, cores made from promising economically-alloyed high-speed steels characterized by a high complex of «hardness—bending strength» are better alternative than ones made of hard alloys or tungsten alloys.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
1978 ◽  
Vol 27 (1) ◽  

Abstract UNIFLUX VCM 125 is a continuous flux-cored welding electrode (wire) that is used to deposit 1 1/4% chromium-1/2% molybdenum steel for which it was developed. Welding is protected by a shielding atmosphere of 100% carbon dioxide. This electrode also may be used to weld other low-alloy steels and carbon steels; however, the weld metal may differ somewhat from 1 1/4% chromium-1/2% molybdenum because of weld-metal dilution. When Uniflux VCM 125 is used to weld 1 1/4% chromium-1/2% molybdenum steel, it provides 95,000 psi tensile strength at 70 F and 24 foot-pounds Charpy V-notch impact at 40 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-340. Producer or source: Unicore Inc., United Nuclear Corporation.


Sign in / Sign up

Export Citation Format

Share Document