Calibration of Performance Models for Surface Treatment to Chilean Conditions: The HDM-4 Case

2003 ◽  
Vol 1819 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Solminihac T. Hernán de ◽  
Hidalgo S. Priscila ◽  
Salgado T. Mauricio

The HDM-4 (Highway Development Management) model used for pavement management activities must be adjusted to the specific conditions of a country or region where they are to be used by adjusting certain calibration factors. The results obtained from calibrating the cracking, raveling, potholing, rut depth, and roughness models contemplated in HDM-4 version 1.1 for surface treatments are presented and compared with the results obtained from equivalent models of HDM-III. In this task, the “windows” methodology was used, which consists of reconstructing the distress performance curve of a specific road category starting with observation of the condition of different roads with similar characteristics (such as traffic, pavement structural capacity, and climatic conditions) but of different ages. On the basis of the results obtained, recommendations for calibrating the performance models are proposed, and calibration factors more adequate for characteristics specific to Chilean surface treatments are established. On comparing the results of the calibrated models of HDM-III and HDM-4, it is concluded that both cases furnish similar values, and use of HDM-4 models is recommended because of their operating advantages and because they afford a greater flexibility, which allows them to more aptly adapt to a broader number of cases and situations.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amr M. Elnaghy ◽  
Ayman Mandorah ◽  
Ali H. Hassan ◽  
Alaa Elshazli ◽  
Shaymaa Elsaka

Abstract Background To evaluate the effect of surface treatments on the push-out bond strength of Biodentine (BD) and white mineral trioxide aggregate (WMTA) to fiber posts. Methods Two brands of fiber posts were used: Reblida post; RP and RelyX post; RX. Each type of post (n = 80/group) was divided into four groups (n = 20/group) and exposed to surface treatment as follows: Control (no treatment), sandblasting (SB), hydrofluoric acid (HF), and TiF4 4 wt/v%. Each group was further subdivided into two subgroups (n = 10/subgroup) based on the type of CSCs used as follows: Subgroup A: BD and Subgroup B: WMTA. Push-out bond strength of BD and WMTA to glass fiber posts was assessed. Data were statistically analyzed using three-way ANOVA and Tukey’s test. A Weibull analysis was performed on the push-out bond strength data. Results BD showed higher bond strength than WMTA (P < 0.001). The push-out bond strength for posts treated with TiF4 4 wt/v% showed greater bond strength than the other surface treatments (P < 0.05). The BD/RP-TiF4 4 wt/v% showed the greater characteristic bond strength (σ0) (15.93) compared with the other groups. Surface treatments modified the surface topography of glass fiber posts. Conclusions The BD/RP-TiF4 4 wt/v% showed greater bond strength compared with the other groups. The TiF4 4 wt/v% surface treatment enhanced the bond strength of BD and WMTA to glass fiber posts than the other treatments. Surface treatment of fiber post with TiF4 4 wt/v% could be used to improve the bond strength with calcium silicate-based cements.


Author(s):  
Gergely Juhász ◽  
Miklós Berczeli ◽  
Zoltán Weltsch

Over the last decade, the number of researches has increased in the field of bonding technologies. Researchers attempt to improve surface adhesion properties by surface treatments. Adhesive bonding is one of these bonding techniques, where it is important to see what surfaces will be bonded. One such surface property is wetting, which can be improved by several types of surface treatment. In recent years, atmospheric pressure plasmas have appeared, with which research is ongoing on surface treatments. In our research, we will deal with the effects of plasma surface treatment at atmospheric pressure and its measurement. In addition, we summarize the theoretical background of adhesion, surface tension and surface treatment with atmospheric pressure plasma. Our goal is to improve adhesion properties and thus the adhesion quality.


2020 ◽  
Vol 19 ◽  
pp. e206155
Author(s):  
Yançanã Luizy Gruber ◽  
Thaís Emanuelle Bakaus ◽  
Bruna Fortes Bittencourt ◽  
João Carlos Gomes ◽  
Alessandra Reis ◽  
...  

Aim: The roughness and micromorphology of various surface treatments in aged metal-free crowns and the bond strength of these crowns repaired with composite resin (CR) was evaluated in vitro. Methods: A CR core build-up was confectioned in 60 premolars and prepared for metal-free crowns. Prepared teeth were molded with the addition of silicone, and the laboratory ceromer/fiber-reinforced crowns (SR Adoro/Fibrex Lab) were fabricated. Subsequently, the crowns were cemented and artificially aged in a mechanical fatigue device (1.2 X 106 cycles), then divided into 4 groups (n = 15) according to the surface treatment: 1) phosphoric acid etching (PA); 2) PA + silane application; 3) roughening with a diamond bur + PA; and 4) sandblasting with Al2O3 + PA. After the treatments, the crowns (n = 2) were qualitatively analyzed by scanning electron microscope (SEM) and surface roughness (n = 5) was analyzed before and after the surface treatment (Ra parameter). The remaining crowns (n = 8) received standard repair with an adhesive system (Tetric N-Bond) and a nanohybrid CR (Tetric N-Ceram), and the microshear bond strength (SBS) test was performed (0.5 mm/min). Roughness and SBS data were analyzed by one- and two-way ANOVA, respectively, as well as Tukey’s post-test (α = 0.05). Results: Sandblasting with Al2O3 + PA resulted in the highest final roughness and SBS values. The lowest results were observed in the PA group, whereas the silane and diamond bur groups showed intermediate values. Conclusion: It may be concluded that indirect ceromer crowns sandblasted with aluminum oxide prior to PA etching promote increased roughness surface and bond strength values.


Author(s):  
Orhan Kaya ◽  
Halil Ceylan ◽  
Sunghwan Kim ◽  
Danny Waid ◽  
Brian P. Moore

In their pavement management decision-making processes, U.S. state highway agencies are required to develop performance-based approaches by the Moving Ahead for Progress in the 21st Century (MAP-21) federal transportation legislation. One of the performance-based approaches to facilitate pavement management decision-making processes is the use of remaining service life (RSL) models. In this study, a detailed step-by-step methodology for the development of pavement performance and RSL prediction models for flexible and composite (asphalt concrete [AC] over jointed plain concrete pavement [JPCP]) pavement systems in Iowa is described. To develop such RSL models, pavement performance models based on statistics and artificial intelligence (AI) techniques were initially developed. While statistically defined pavement performance models were found to be accurate in predicting pavement performance at project level, AI-based pavement performance models were found to be successful in predicting pavement performance in network level analysis. Network level pavement performance models using both statistics and AI-based approaches were also developed to evaluate the relative success of these two models for network level pavement performance modeling. As part of this study, in the development of pavement RSL prediction models, automation tools for future pavement performance predictions were developed and used along with the threshold limits for various pavement performance indicators specified by the Federal Highway Administration. These RSL models will help engineers in decision-making processes at both network and project levels and for different types of pavement management business decisions.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa Mehmet Özarslan ◽  
Özlem Üstün ◽  
Ulviye Sebnem Buyukkaplan ◽  
Çağatay Barutcigil ◽  
Nurullah Türker ◽  
...  

Adult orthodontics may confront problems related to the bonding performance of orthodontic brackets to new generation restorative materials used for crown or laminate restorations. The aim of the present study was to investigate the shear bond strength of ceramic brackets to two new generation CAD/CAM interpenetrating network composite and nanoceramic composite after different surface treatments. Er,Cr:YSGG Laser, hydrofluoric acid (9%), sandblasting (50 μm Al2O3), and silane were applied to the surfaces of 120 CAD/CAM specimens with 2 mm thickness and then ceramic brackets were bonded to the treated surfaces of the specimens. Bond strength was evaluated using the shear bond strength test. According to the results, CAD/CAM block types and surface treatment methods have significant effects on shear bond strength. The lowest bond strength values were found in the specimens treated with silane (3.35 ± 2.09 MPa) and highest values were found in the specimens treated with sandblast (8.92 ± 2.77 MPa). Sandblasting and hydrofluoric acid surface treatment led to the most durable bonds for the two types of CAD/CAM blocks in the present study. In conclusion, different surface treatments affect the shear bond strength of ceramic brackets to CAD/CAM interpenetrating network composite and nanoceramic composite. Among the evaluated treatments, sandblasting and hydrofluoric acid application resulted in sufficient bonding strength to ceramic brackets for both of the CAD/CAM materials.


Author(s):  
Edgar Camacho-Garita ◽  
Robinson Puello-Bolaño ◽  
Piero Laurent-Matamoros ◽  
José P. Aguiar-Moya ◽  
Luis Loria-Salazar

This paper reviews the use of pavement structural condition indicators determined through deflection measurements as a means to monitor structural capacity. The deflection measurements were performed with a road surface deflectometer and a falling weight deflectometer on the various test tracks of an accelerated pavement test (APT) facility. The indicators estimation was based on the deflection data collected from different structures, and it was observed that it is feasible to improve the backcalculation analysis and help overcome some of the limitations associated with such a procedure. For this research, Radius of Curvature, AREA, Normalized AREA, BLI (Upper layers), MLI (Middle layers), and LLI (Lower layers) were the analyzed parameters. Each parameter is related to the structural condition of particular pavement layers. Therefore, the parameters allow general characterization of the pavement layers, and make it possible to detect deteriorated layers. The pavement structures were trafficked by means of an APT at the PaveLab facility at the University of Costa Rica. The deflection parameters were calculated through the APT data, showing the possible use of these indicators at the pavement management system level in Costa Rica, helping the categorization of the pavement structures in service, mainly because the parameters require few input data, and are useful where the available structural condition information is limited. The data presented in this paper show the variation of the different condition indicators throughout the service life of the analyzed pavement structures. The data are also used to compare different structures, their characteristics, and the change in their stiffness associated with damage.


Sign in / Sign up

Export Citation Format

Share Document