scholarly journals THREE-DIMENSIONAL DENSITY MODEL OF THE UPPER CRUST AT THE JUNCTION OF THE LOSEVSKY AND DONSKOY TERRANES (VORONEZH CRYSTALLINE MASSIF)

Author(s):  
T.A. Voronova ◽  
◽  
O.M. Muravina ◽  
V.N. Glaznev ◽  
S.I. S.I. Berezneva ◽  
...  

The results of detailed three-dimensional density modeling of the upper crust of the area located in the southeastern part of the Voronezh crystalline massif at the junction of the Losevsky and Donskoy terranes and, partially, the Vorontsovsky terrane are presented. The resulting model was built based on the inversion of local anomalies of the gravity field into anomalous density values, taking into account all available geological and geophysical information. The field inversion was implemented within the framework of the starting model developed on the basis of the regional density model and corresponding gravitational field of the East European platform lithosphere, generalized information on the density of rocks of the sedimentary cover and crystalline basement, the thickness of the «gravitational» layer obtained by statistical analysis of the anomalous field, and geological data and topography. The resulting model shows density distribution of the crystalline basement rocks to a depth of 16 km, and provides thus fundamentally new information about the geological structure of the upper crust of the area. The model makes it possible to trace geological objects, which are most expressive in terms of density, at deep levels, and allows interpreting the relationship between the Losevsky and Donskoy terranes in the upper-middle crust. The consistency of the model and observed gravitational fields indicates the reliability of the obtained results.

2018 ◽  
Vol 9 (5) ◽  
pp. 932
Author(s):  
SorinVadim M. ALEKSANDROV ◽  
Alexander V. MOROZOV ◽  
Ivan P. POPOV ◽  
Rushania G. LEBEDEVA ◽  
Irina A. BULGAKOVA

The detailed characterization of the environmental conditions of sedimentation of the  productive formation makes it possible to refine the features of the geological structure. The authors carried out a detailed lithologic-facial analysis of the deposits of the Yu12 productive formation at one of the deposits located in the southeastern part of the West Siberian oil and gas basin. Detailed lithologic-facial schemes were constructed that reflect the spatial distribution of the main permeable bodies, considering the forecast of the distribution of promising reservoir rocks in zones not covered by drilling. The well test results confirm the adopted model of sedimentary facies distribution over the area of the deposit. The proposed conceptual model was used to construct a three-dimensional facial model of the deposit. Thus, a detailed lithologic-facial analysis of the core and forms of the GIS curves showed that deposits of the  stack accumulated in coastal-marine sedimentation environments – "marshes" and "watts", repeatedly replacing each other vertically.


2020 ◽  
pp. 8-19
Author(s):  
E. S. Milei ◽  
S. R. Bembel

The article is devoted to a comprehensive analysis of the geological structure of a complex oil reservoir located in the southeastern part of the Pannonian basin. The concept of the hydrocarbon traps formation is based on the connection with the deep processes of oil and gas formation and phenomena, which lead to the formation of cracks, faults, local positive structures in the interval from the foundation to the upper part of the sedimentary cover. The article shows the significance of deep faults in the basement during the formation of sedimentary cover structures. These processes result in a wide range of oil and gas potential of the Pannonian basin deposits. In studying the specifics of tectonic movements and the features of gravitational deposits (conglobreccia), a tectono-sedimentary approach has been developed that can reduce a number of methodological difficulties in creating geological models and concepts. Recommendations are given on the additional study of adjacent structures in order to detect hydrocarbon deposits on the slopes with protrusions of the crystalline basement. Characteristic features of the geological structure are the local volume of the identified oil and gas deposits, small foci of increased productivity and improved filtration properties of reservoirs. Such features of the uneven distribution of sites of different productivity have a significant impact on the success of prospecting and exploration, the effectiveness of development of oil and gas deposits.


2021 ◽  
Author(s):  
David Arutyunyan ◽  
Ivan Lygin ◽  
Kirill Kuznetsov ◽  
Tatiana Sokolova ◽  
Tatiana Shirokova ◽  
...  

<p>The 3D gravity inversion was realized in order to reveal the density features of the Earth's crust the Barents Sea. The original 3D density model of the region includes both lateral and depth density`s changes.<br>The main steps of the modelling are:</p><p>- The calculation of the anomalies of the gravity field in Bouguer reduction with the three-dimensional gravitational effect correction of the seabed.</p><p>- Gravity field correction for the three-dimensional influence of the Moho boundary (according to the GEMMA model). The excess density at the Moho picked by minimizing the standard (root-mean-square) deviation of the gravity effect from GEMMA Moho boundary and Bouguer anomalies. So, the regional density jump at the Moho border is 0.4 g / cm<sup>3</sup>.</p><p>- Based on regional geological and geophysical data about the deep structure of the Barents Sea, it was developed generalized dependence of density changes by depth in the sedimentary cover and the consolidated part of the earth's crust.</p><p>- Compilation of 3D original model of the base of the sedimentary cover on predictive algorithms of neural networks. The neural network was trained on several reference areas located in different parts Barents area using a number of potential fields transformations and the bottom of the sedimentary cover from model SedThick 2.0.</p><p>- Using the resulted dependence of the crust density change by depth and a new model of the sedimentary cover bottom, the gravitational field corrected for the impact of the sedimentary cover with variable density.</p><p>- The finally stripped gravity field is used to create density model above and below the base of the sedimentary cover. Frequency filtering on Poisson wavelets [Kuznetsov et al., 2020] had been used for the final separation of the gravitational field into its components.</p><p>- The inverse task was solved using specialized volumetric regularization [Chepigo, 2020].</p><p>As a result, the crust of the Barents Sea density inhomogeneities were localized by depth and laterally in 3D model, which became the basis for further structural-tectonic mapping.</p><p>References</p><p>Chepigo L.S. GravInv3D [3D density modeling software]. Patent RF, no. 2020615095, 2020. https://en.gravinv.ru/</p><p>Kuznetsov K.M. and Bulychev A.A. GravMagSpectrum3D [Program for spectral analysis of potential fields]. Patent RF, no. 2020619135, 2020.</p>


2020 ◽  
pp. 4-10
Author(s):  
N.R. Abdullayev ◽  

The paper aims to justify the thickness of sedimentary cover along the aquatory of South Caspian basin and Azerbaijan onshore (including South and Middle Kur basin and Yevlakh-Aghjabedy downfall), the cover thickness of crystalline basement, specifying its structural position and key tectonic borders, as well as the confirmation of some issues on geodynamic evolution. Such comparison was carried out via published seismic temperature, gravimetric and magnitometric data. Definite dependences of geothermal gradients, the thickness of sedimentary cover and crystalline basement depth have been specified.


Author(s):  
Teresa GRABOWSKA ◽  
Grzegorz BOJDYS ◽  
Zdzislaw PETECKI

South-eastern Poland is situated between the East European Craton (EEC), the Paleozoic and Mezosoic of Western Europe and the Carpathians. Complex geological structure of the area is reflected on the maps of potential fields anomalies. The analyses of the total magnetic intensity anomaly map ∆T and the vertical derivatives of these anomalies in relation to geological data provide many information concerning the structure and magnetic properties of rocks of the crystalline basement. These analyses indirectly reveal the degree of the petrologic diversification and the tectonics of the basement in comparison with the adjoining blocks of the Paleozoic and Variscan orogens and their basement as well as those located in the area of the Trans–European Suture Zone (TESZ). Two dimensional (2D) magnetic models of the basement along the seismic profiles (CEL 01, CEL 05) and corresponding three dimensional (3D) model have been constructed. This interpretation is based on spectral analysis of the magnetic anomalies and their quantitative interpretation which includes data from the CELEBRATION 2000 project, as well as information concerning the magnetic properties of rocks made available through drilling. The comparative analysis of maps showing magnetic and gravity anomalies have revealed the architecture of the crystalline basement in the area where the East European Craton (EEC) is in contact with the Paleozoic and Mezosoic of Western Europe, as well as its impact on the image of residual gravity anomalies within the area of the craton.


2021 ◽  
Vol 12 (3S) ◽  
pp. 748-753
Author(s):  
K. V. Toropetsky ◽  
G. A. Borisov ◽  
A. S. Smirnov ◽  
A. V. Nosikov

The article describes the possibility of using the granulometric analysis of rock cuttings formed in controlled core scratching tests to estimate the angle of internal friction.The study object is the Kovykta gas-condensate field (GCF) that occupies a wide area in the southeastern part of the Irkutsk amphitheater of the Siberian platform. This uniquely complex geological structure holds significant reserves of hydrocarbons. Its sedimentary cover is composed of the Vendian – lower Paleozoic and partly Riphean formations. Their total thickness exceeds 6000 m, as estimated from the new seismic survey data [Vakhromeev et al., 2019].The sedimentary cover of the Kovykta GCF has been studied by surface and borehole geophysical techniques, remote sensing and geostructural methods, in combination with the tectonophysical approach [Seminsky et al., 2018] based on drilling data, including standard and special core sampling data.


2020 ◽  
Author(s):  
Denis Zubov ◽  
Kseniia Antashchuk ◽  
Alexey Atakov ◽  
Kirill Mazurkevich ◽  
Marina Petrova

<p>The wide range of anomalies caused by different geological structures from local to regional are studied by the heterogeneous datasets. They usually include the surveys of highly variable scales, resolution and quality. These parameters determine the methodology and technique used in further interpretation. The absence of detail and high quality surveys of geomagnetic field for large areas does not allow the implementation of the system analysis approach to full spectra of anomalies of magnetic field. The possibilities of system analysis using for various scale magnetic surveys to clarify of the tectonic settings and geological structure of the southeastern part of the Yano-Kolyma fold belt are considered. The geological structure of this area was studied earlier by the seismic and magnetotelluric investigations along 2DV regional profile. The tectonic settings are represented by several folded areas and cratons which are covered and knit together by Late Mesozoic bends and volcanic belt. The system interpretation of various scale magnetic surveys allowed us to obtain the geological and tectonic models of this area that include the following principal components: the deep structure of joint zones of different tectonic blocks; the structure and thickness of Paleozoic – Mesozoic deposits of sedimentary cover, crystalline basement and bends; the structure of volcanic belt deposits.</p>


2021 ◽  
Vol 929 (1) ◽  
pp. 012007
Author(s):  
E S Przhiyalgovskii ◽  
A K Rybin ◽  
Yu A Morozov ◽  
E V Lavrushina ◽  
M G Leonov ◽  
...  

Abstract The article presents the results of complex geological and geophysical studies in the Naryn depression and Atbashi depression in the Middle Tien Shan. They included the geological interpretation of new magnetotelluric data along the detailed profile crossing the key segment of the Tien Shan, and the study of the morphology and spatial position of the sedimentary cover and basement structures. The compilation of the results of structural-geological and geophysical studies makes it possible to create a 2D model of the upper-crust geological structure, consistent with the structure of the electrical conductivity to depths of about 10 km and to analyze the structural features of deeper horizons. Two types of structural patterns of the electric conductivity, corresponding to the sedimentary complexes of the cover and the folded-metamorphic complexes of the basement, have been identified. Sedimentary rock complexes in depressions have a high electrical conductivity and subhorizontal structure. The upper crust above the K2 density layer is characterized by an alternation of rocks volumes with contrasting conductivity, elongated vertically. The recorded structure of the field confirms the presence of steep zones of fluid permeability and fragmentation, noted earlier in seismic profiles and probably corresponding to the Paleozoic structures of fragmentation of the Earth’s crust, activated during Alpine orogeny. Comprehensive research allow to characterize the deformations of the Cenozoic sedimentary complex and the surface of the Paleozoic basement associated with the Alpine activation of the key segment of the Tien Shan.


2021 ◽  
Vol 11 (5) ◽  
pp. 2086
Author(s):  
Meng Fanwen ◽  
Han Jiangtao ◽  
Liu Wenyu ◽  
Liu Lijia

The Huailai area is rich in geothermal resources, but the formation mechanism of its deep heat source is still unclear. In this paper, based on 16 broadband magnetotelluric sounding points, the two-dimensional electrical structure of the crust and mantle in the Huailai area was obtained. Combined with deep seismic reflection and P-wave seismic tomography, the geophysical characteristics of deep heat sources and reservoirs in the Huailai area are described. The Huailai area is characterized by low resistivity and layered reflection above 2 km in depth, which shows the distribution of the Cenozoic sedimentary cover layer. The upper crust is characterized by high resistivity without an obvious reflector, corresponding to the crystalline basement of the basin, whose main lithology is Archean gneiss. There is a highly conductive and bright-spot-reflective structure under the basement, which extends to 100 km, indicating the upwelling of mantle-derived material. Combined with the results of helium isotope tracing, a magma-type geothermal model in the Huailai area is proposed. The upwelling mantle-derived magma material is enriched under the basement to form a heat source. The heat is transferred to the upper crust through heat conduction along the crystalline basement. Then, groundwater circulation brings deep heat to the surface, forming hydrothermal resources.


Author(s):  
Evgenia Salin ◽  
Jeremy Woodard ◽  
Krister Sundblad

AbstractGeological investigations of a part of the crystalline basement in the Baltic Sea have been performed on a drill core collected from the depth of 1092–1093 m beneath the Phanerozoic sedimentary cover offshore the Latvian/Lithuanian border. The sample was analyzed for geochemistry and dated with the SIMS U–Pb zircon method. Inherited zircon cores from this migmatized granodioritic orthogneiss have an age of 1854 ± 15 Ma. Its chemical composition and age are correlated with the oldest generation of granitoids of the Transscandinavian Igneous Belt (TIB), which occur along the southwestern margin of the Svecofennian Domain in the Fennoscandian Shield and beneath the Phanerozoic sedimentary cover on southern Gotland and in northwestern Lithuania. It is suggested that the southwestern border of the Svecofennian Domain is located at a short distance to the SW of the investigated drill site. The majority of the zircon population shows that migmatization occurred at 1812 ± 5 Ma, with possible evidence of disturbance during the Sveconorwegian orogeny.


Sign in / Sign up

Export Citation Format

Share Document