scholarly journals Magmatic Geothermal Genesis Model in the Huailai Area Based on the Constraints of the Crust–Mantle-Scale Geoelectric Structure

2021 ◽  
Vol 11 (5) ◽  
pp. 2086
Author(s):  
Meng Fanwen ◽  
Han Jiangtao ◽  
Liu Wenyu ◽  
Liu Lijia

The Huailai area is rich in geothermal resources, but the formation mechanism of its deep heat source is still unclear. In this paper, based on 16 broadband magnetotelluric sounding points, the two-dimensional electrical structure of the crust and mantle in the Huailai area was obtained. Combined with deep seismic reflection and P-wave seismic tomography, the geophysical characteristics of deep heat sources and reservoirs in the Huailai area are described. The Huailai area is characterized by low resistivity and layered reflection above 2 km in depth, which shows the distribution of the Cenozoic sedimentary cover layer. The upper crust is characterized by high resistivity without an obvious reflector, corresponding to the crystalline basement of the basin, whose main lithology is Archean gneiss. There is a highly conductive and bright-spot-reflective structure under the basement, which extends to 100 km, indicating the upwelling of mantle-derived material. Combined with the results of helium isotope tracing, a magma-type geothermal model in the Huailai area is proposed. The upwelling mantle-derived magma material is enriched under the basement to form a heat source. The heat is transferred to the upper crust through heat conduction along the crystalline basement. Then, groundwater circulation brings deep heat to the surface, forming hydrothermal resources.

Author(s):  
T.A. Voronova ◽  
◽  
O.M. Muravina ◽  
V.N. Glaznev ◽  
S.I. S.I. Berezneva ◽  
...  

The results of detailed three-dimensional density modeling of the upper crust of the area located in the southeastern part of the Voronezh crystalline massif at the junction of the Losevsky and Donskoy terranes and, partially, the Vorontsovsky terrane are presented. The resulting model was built based on the inversion of local anomalies of the gravity field into anomalous density values, taking into account all available geological and geophysical information. The field inversion was implemented within the framework of the starting model developed on the basis of the regional density model and corresponding gravitational field of the East European platform lithosphere, generalized information on the density of rocks of the sedimentary cover and crystalline basement, the thickness of the «gravitational» layer obtained by statistical analysis of the anomalous field, and geological data and topography. The resulting model shows density distribution of the crystalline basement rocks to a depth of 16 km, and provides thus fundamentally new information about the geological structure of the upper crust of the area. The model makes it possible to trace geological objects, which are most expressive in terms of density, at deep levels, and allows interpreting the relationship between the Losevsky and Donskoy terranes in the upper-middle crust. The consistency of the model and observed gravitational fields indicates the reliability of the obtained results.


Author(s):  
Evgenia Salin ◽  
Jeremy Woodard ◽  
Krister Sundblad

AbstractGeological investigations of a part of the crystalline basement in the Baltic Sea have been performed on a drill core collected from the depth of 1092–1093 m beneath the Phanerozoic sedimentary cover offshore the Latvian/Lithuanian border. The sample was analyzed for geochemistry and dated with the SIMS U–Pb zircon method. Inherited zircon cores from this migmatized granodioritic orthogneiss have an age of 1854 ± 15 Ma. Its chemical composition and age are correlated with the oldest generation of granitoids of the Transscandinavian Igneous Belt (TIB), which occur along the southwestern margin of the Svecofennian Domain in the Fennoscandian Shield and beneath the Phanerozoic sedimentary cover on southern Gotland and in northwestern Lithuania. It is suggested that the southwestern border of the Svecofennian Domain is located at a short distance to the SW of the investigated drill site. The majority of the zircon population shows that migmatization occurred at 1812 ± 5 Ma, with possible evidence of disturbance during the Sveconorwegian orogeny.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


2021 ◽  
Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1631
Author(s):  
Fan ◽  
Pang ◽  
Liao ◽  
Tian ◽  
Hao ◽  
...  

The Ganzi geothermal field, located in the eastern sector of the Himalayan geothermal belt, is full of high-temperature surface manifestations. However, the geothermal potential has not been assessed so far. The hydrochemical and gas isotopic characteristics have been investigated in this study to determine the geochemical processes involved in the formation of the geothermal water. On the basis of δ18O and δD values, the geothermal waters originate from snow and glacier melt water. The water chemistry type is dominated by HCO3-Na, which is mainly derived from water-CO2-silicate interactions, as also indicated by the 87Sr/86Sr ratios (0.714098–0.716888). Based on Cl-enthalpy mixing model, the chloride concentration of the deep geothermal fluid is 37 mg/L, which is lower than that of the existing magmatic heat source area. The estimated reservoir temperature ranges from 180–210 °C. Carbon isotope data demonstrate that the CO2 mainly originates from marine limestone metamorphism, with a fraction of 74–86%. The helium isotope ratio is 0.17–0.39 Ra, indicating that the He mainly comes from atmospheric and crustal sources, and no more than 5% comes from a mantle source. According to this evidence, we propose that there is no magmatic heat source below the Ganzi geothermal field, making it a distinctive type of high-temperature geothermal system on the Tibetan Plateau.


2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


2019 ◽  
Author(s):  
Thomas M. Belgrano ◽  
Larryn W. Diamond ◽  
Yves Vogt ◽  
Andrea R. Biedermann ◽  
Samuel A. Gilgen ◽  
...  

Abstract. Recent studies have revealed genetic similarities between Tethyan ophiolites and oceanic proto-arc sequences formed above nascent subduction zones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as an analogue for this proto-arc crust. Though proto-arc magmatism and the mechanisms of subduction-initiation are of great interest, insight is difficult to gain from drilling and limited surface outcrops in submarine fore-arcs. In contrast, the Semail ophiolite, in which the 3–5 km thick upper-crustal succession is exposed in an oblique cross-section, presents an opportunity to assess the architecture and volumes of different volcanic rocks that form during the protoarc stage. To determine the distribution of the volcanic rocks and to aid exploration for the volcanogenic massive sulphide (VMS) deposits that they host, we have re-mapped the volcanic units of the Semail ophiolite by integrating new field observations, geochemical analyses and geophysical interpretations with pre-existing geological maps. By linking the major element compositions of the volcanic units to rock magnetic properties, we were able to use aeromagnetic data to infer the extension of each outcropping unit below sedimentary cover, resulting in in a new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, we have distinguished four, recording the progression from early spreading-axis basalts (Geotimes) through to axial to off-axial depleted basalts (Lasail), to post-axial tholeiites (Tholeiitic Alley) and finally boninites (Boninitic Alley). Geotimes (Phase 1) axial dykes and lavas make up ~55 vol% of the Semail upper crust, whereas post-axial (Phase 2) lavas constitute the remaining ~ 45 vol % and ubiquitously cover the underlying axial crust. The Semail boninites occur as discontinuous accumulations up to 2 km thick at the top of the sequence and constitute ~ 15 vol % of the upper crust. The new map provides a basis for targeted exploration of the gold-bearing VMS deposits hosted by these boninites. The thickest boninite accumulations occur in the Fizh block, where magma ascent occurred along crustal-scale faults that are connected to shear zones in the underlying mantle rocks, which in turn are associated with economic chromitite deposits. Locating major boninite feeder zones may thus be an indirect means to explore for chromitites in the underlying mantle.


2019 ◽  
Vol 11 (24) ◽  
pp. 2923 ◽  
Author(s):  
Julián Martínez ◽  
Javier Rey ◽  
Senén Sandoval ◽  
Mª Camen Hidalgo ◽  
Rosendo Mendoza

The aim of this study is to prove the effectiveness of two electrical geophysical prospecting techniques, namely electrical resistivity tomography (ERT) and induced polarization (IP), in locating thin vein structures of metal sulphides embedded in Palaeozoic materials underlying a sedimentary cover. For this purpose, a Quaternary basin known as La Garza was selected, located in the mining district of Linares-La Carolina (Southern Spain). Galena (PbS) veins appear abundantly throughout this area, hosted in the Palaeozoic granitic bedrock. The studied veins show thicknesses from 0.5 to 2.0 m, and most present a vertical planar distribution. The veins lose their continuity below the sedimentary cover due to normal fractures that control the subsidence of the basin. During the 1980s, geophysical research campaigns were carried out in La Garza using vertical electrical sounding and failed in detecting the hidden veins. For this reason, to carry out this study, a closed regular mesh was designed, composed by eight ERT and IP profiles, with variable lengths between 315 and 411 metres. An electrode spacing between 5 and 7 metres was selected, thus allowing the granite bedrock to be reached without significantly reducing the resolution capabilities of the method. Even though ERT and IP are well-known geophysical techniques for mapping ore deposits, this is a case study that shows the advantages of the simultaneous use of both techniques (ERT and IP), over their individual application. ERT allows for reconstructing the morphology of the basin and the fractures that control it due to high-resistivity contrast between the overlying sedimentary cover and the underlaying granitic basement. However, it cannot provide any insights about their degree of mineralization. At this point, it is the IP technique that makes it possible to differentiate which are the mineralized structures. Some of these fractures produce high (above 50 mV/V) and moderate (below 50 mV/V) chargeability values, suggesting the existence of several unexploited metal veins. Furthermore, the derived models enable researchers to analyse the morphology of this sedimentary basin controlled by normal faults.


2019 ◽  
Vol 11 (21) ◽  
pp. 2521 ◽  
Author(s):  
Zicheng Huang ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Wenyu Gong ◽  
Yingfeng Zhang ◽  
...  

The 12 November 2017 Darbandikhan earthquake (Mw 7.3) occurred along the converence zone. Despite the extensive research on this earthquake, none of this work explained whether this earthquake rupture was limited to the thick sedimentary cover or it extends to the underlying crystalline basement rock (or both). Besides, whether this region will generate devastating earthquakes again and whether there is a one-to-one correlation between these anticlines and blind-reverse faults need further investigation. In this study, we derived the co-seismic interferograms from the Sentinel-1A/B data and successfully described the surface deformation of the main seismic zone. The fringe patterns of both the ascending and descending interferograms show that the co-seismic deformation is dominated by horizontal movements. Then, using the along- and across-track deformation fields of different orbits, we retrieved the three-dimensional deformation field, which suggests that the Darbandikhan earthquake may be a blind thrust fault close to the north–south direction. Finally, we inverted the geometrical parameters of the seismogenic fault and the slip distribution of the fault plane. The results show that the source fault has an average strike of 355.5° and a northeast dip angle of −17.5°. In addition, the Darbandikhan earthquake has an average rake of 135.5°, with the maximum slip of 4.5 m at 14.5 km depth. On the basis of the derived depth and the aftershock information provided by the Iranian Seismological Center, we inferred that this event primarily ruptured within the crystalline basement and the seismogenic fault is the Zagros Mountain Front Fault (MFF). The seismogenic region has both relatively low historical seismicity and convergent strain rate, which suggests that the vicinity of the epicenter may have absorbed the majority of the energy released by the convergence between the Arabian and the Eurasian plates and may generate Mw > 7 earthquakes again. Moreover, the Zagros front fold between the Lurestan Arc and the Kirkuk Embayment may be generated by the long-distance slippage of the uppermost sedimentary cover in response to the sudden shortening of the MFF basement. We thus conclude that the master blind thrust may control the generation of the Zagros front folding.


2020 ◽  
Author(s):  
Tomasz Janik ◽  
Vitaly Starostenko ◽  
Paweł Aleksandrowski ◽  
Tamara Yegorova ◽  
Wojciech Czuba ◽  
...  

<p>Crustal and uppermost mantle structure along the Teisseyre-Tornquist Zone (TTZ)  was explored along the ~550 km long, NW-SE-trending TTZ-South profile, using seismic wide-angle reflection/refraction (WARR) method. The profile line was intended to follow the border between the East European Craton (EEC) and the so called Palaeozoic Platform (PP) of north-central Europe, believed to contain a number of crustal blocks that were accreted to the craton during pre-late Carboniferous times, defining the Trans-European Suture Zone (TESZ).</p><p>The seismic velocity model of the TTZ-South profile shows lateral variations in crustal structure. Its Ukrainian segment crosses the interior of the Sarmatian segment of the EEC, where the crystalline basement gradually dips from ~2 km depth in the SE to ~12 km at the Ukrainian-Polish border. This part of the model shows a four-layered crustal structure, with an up to 15 km-thick sedimentary cover, an underlying crystalline upper crust, a 10-15 km-thick middle crust and a ~15 km thick lower crust. In Poland, the profile passes along the TESZ/EEC transition zone of complex crustal structure. The crystalline basement, whose top occurs at depths of 10-17 km, separates the sedimentary cover from the ~10 km thick mid-crustal layer (Vp=6.5-6.6 km/s), which, in turn, overlies a block of 10-15 km thickness with upper crustal velocities (Vp~6.2 km/s). The latter is underlain by a ~10-15 km-thick lower crust. Along most of the model one can see conspicuous velocity inversion zones occuring at various depths. At intersections of the TTZ-South profile with some previous deep seismic profiles (e.g. CEL02, CEL05, CEL14, PANCAKE) such inversions document complex wedging relationships between the EEC and PP crustal units. These may have resulted from tectonic compression and thick-skinned thrusting due to either Neoproterozoic EEC collision with accreting terranes or intense Variscan orogenic events. Five high velocity bodies (HVB; V<sub>p</sub> = 6.85-7.2 km/s) were detected in the middle and lower crust at 15-37 km depth. The Moho depth varies substantially along the profile. It is at ~42 km depth in the NW and deepens SE-ward to ~50 km at ~685 km. Subsequently, it rises abruptly to ~43 km at the border of the Sarmatian segment of the EEC and sinks again to ~50 km beneath the Lviv Paleozoic trough at ~785 km. From this point until the SE end of the profile, the Moho gently shallows, up to a depth of ~37 km, including a step-like jump of 2 km at ~875 km. Such abrupt Moho steps may be related to crust-scale strike-slip faults. Along the whole profile, sub-Moho velocities are ~8.05-8.1 km/s, and at depths of 57-63 km Vp values reach 8.2-8.25 km/s. Four reflectors/refractors were modelled in the upper mantle at ~57-65 km and ~80 km depths.</p>


Sign in / Sign up

Export Citation Format

Share Document