scholarly journals INVESTIGATION OF GLASS PLATE FAILURE MECHANISM SUBJECTED TO COPPER AND STEEL PROJECTILE IMPACTS

2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Qasim H. Shah ◽  
Kyaw M. Aung

ABSTRACT: A glass plate was subjected to impact by spherical copper and steel projectiles at low velocities. The glass failure features consisted of a central Hertzian cone made up of comminuted glass and a spider web like cracking pattern around the cone with circumferential and radial cracks. The objective of the investigation was to determine if the damage caused by copper projectile impact compared to steel projectile impact was higher for the same kinetic energy (K.E.) projectiles and the reason for this phenomenon. For the constant K.E. impact, copper projectile apparently caused higher damage in glass plate. Higher damage was attributed to projectile contact duration and the contact area between the projectile and the glass plate. Finite element analysis using LS-DYNA based upon maximum principal strain failure criterion for laminated glass model was able to predict the failed material under the impact location and the cracking pattern in the glass plate for a biased meshing scheme. Radial cracks in glass target were reported to be 15% higher for copper projectile impact than the steel projectile impact. ABSTRAK: Kepingan kaca dikenakan impak oleh projektil kuprum dan keluli berbentuk sfera pada halaju rendah. Ciri-ciri kegagalan kaca terdiri daripada kon berpusat Hertzian yang melibatkan kaca yang hancur dan corak pecahan berbentuk sesawang lelabah pada keliling kon dengan retakan lilitan dan jejarian. Tujuan penyelidikan adalah untuk menentukan sebab bagaimana  dengan projektil tenaga kinetik yang sama, kerosakan yang diakibatkan oleh impak projektil kuprum berbanding dengan impak projektil keluli adalah lebih tinggi. Untuk impak tenaga kinetik yang malar, projektil kuprum didapati menyebabkan kerosakan yang lebih ke atas kepingan kaca. Kerosakan lebih disebabkan oleh tempoh sentuhan projektil dan kawasan sentuhan di antara projektil dan kepingan kaca. Analisis unsur terhingga menggunakan LS-DYNA berdasarkan kriteria kegagalan terikan utama maksima untuk model kaca berlamina.  Kaedah ini berupaya menjangkakan kegagalan objek pada lokasi impak dan corak retakan pada kepingan kaca untuk skim berjejaring terpincang.  Retakan berjejari pada sasaran kaca didapati 15% lebih tinggi untuk impak projektil kuprum berbandingkan  dengan impak projektil keluli.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yu Bai ◽  
Li Sun ◽  
Chenhui Wei

High-energy gas fracturing (HEGF) and gas fracturing (GF) are considered to be efficient to enhance the permeability of unconventional gas reservoir. The existing models for HEGF mainly focus on the dynamic loading of stress wave or static loading of gas pressurization, rather than on the combined actions of them. Studies on the combination of HEGF and GF (HEGF+GF) are also few. In this paper, a damage-based stress wave propagation-static mechanical equilibrium-gas flow coupling model is established. Numerical model and determination of mesomechanical parameters in finite element analysis are described in detail. Numerical simulations on crack evolution under HEGF, GF, and HEGF+GF are carried out, and the impact of in situ stress conditions on crack evolution is discussed further. A total of 11 cracks with length of 2.3-4 m in HEGF, 4 main cracks with length of 6.5–8 m in GF, and 11 radial cracks with length of 2–11.5 m in HEGF+GF are produced. Many radial cracks around the borehole are formed in HEGF and extended further in GF. The crustal stress difference is disadvantageous for crack complexity. This study can provide a reference for the application of HEGF+GF in unconventional gas reservoirs.


2004 ◽  
Author(s):  
Gale L. Paulsen ◽  
John D. Reid

Full-scale crash testing was performed on Minnesota’s Aluminum Type III Barricade by the Midwest Roadside Safety Facility. Testing consisted of an 820 kg vehicle impacting the barricade at two positions, 0 and 90-degrees, at 100 km/h. This paper documents the modeling effort to simulate the physical crash events using LS-DYNA, a nonlinear finite element analysis program. As is typical for vehicle crash simulation, there were many modeling issues that needed careful attention. Four items of particular concern were (1) contact snagging - the barricade kept hooking on the hood with edge to edge snagging; (2) placement of barricade - small adjustments to the impact location could cause the tire to run over one of the barricade legs, which did not happen during the testing; (3) contact friction - the friction between the barricade and the front of the vehicle played an important role in how the barricade wrapped around and flipped off of the vehicle, and (4) sandbag weight - the weight of the sandbags, which are placed on the legs of the barricade and are used to prevent the barricades from being moved by the wind, makes a difference on how the sign legs flip up into the air when impacted by a vehicle. Simulation results are shown to be fairly accurate for both impact conditions. Future studies on various barricade configurations are now possible using the model developed during this research.


2013 ◽  
Vol 37 (4) ◽  
pp. 1115-1125 ◽  
Author(s):  
Yo-Han Yoo ◽  
Seung Hoon Paik ◽  
Jong-Bong Kim ◽  
Hyunho Shin

Based on a finite element analysis, the performance of a flying cross bar in protecting a long-rod penetrator increases as the impact location moves toward the head of the penetrator. It also increases as the impact angle approaches right angle. The optimal impact location along the span direction of the bar varies depending on the bar diameter.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Author(s):  
Wei Xu ◽  
C. Guedes Soares

AbstractThe objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage, as a model of what may occur in ship hulls. The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding, collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation. Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA. The ultimate moment and collapse modes are discussed considering the effect of impact location. The impact-induced deformation is introduced in the four-point bending simulation, and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact. It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant. The collapse modes also change when the impactor strikes on different locations. Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes. The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.


Author(s):  
Shamsoon Fareed ◽  
Ian May

Accidental loads, for example, due to heavy dropped objects, impact from the trawl gear and anchors of fishing vessels can cause damage to pipelines on the sea bed. The amount of damage will depend on the impact energy. The indentation will be localized at the contact area of the pipe and the impacting object, however, an understanding of the extent of the damage due to an impact is required so that if one should occur in practice an assessment can be made to determine if remedial action needs to be taken to ensure that the pipeline is still serviceable. There are a number of parameters, including the pipe cross section and impact energy, which influence the impact behaviour of a pipe. This paper describes the response, and assesses the damage, of mild steel pipes under high mass low velocity impacts. For this purpose full scale impacts tests were carried out on mild steel pipe having diameter of 457 mm, thickness of 25.4 mm and length of 2000 mm. The pipe was restrained along the base and a 2 tonnes mass with sharp impactor having a vertical downward velocity of 3870 mm/sec was used to impact the pipe transversely with an impact energy of 16 kJ. It was found from the impact tests that a smooth indentation was produced in the pipe. The impact tests were then used for validation of the non-linear dynamic implicit analyses using the finite element analysis software ABAQUS. Deformations at the impact zone, the rebound velocity, etc, recorded in the tests and the results of the finite element analysis were found to be in good agreement. The impact tests and finite element analyses described in this paper will help to improve the understanding of the response of steel pipes under impact loading and can be used as a benchmark for further finite element modelling of impacts on pipes.


2005 ◽  
Author(s):  
Robert Ranzenbach ◽  
Zhenlong Xu

A method is described to conduct an integrated Fluid-Structure Interaction (FSI) simulation of sails that is based upon knowledge of the sail’s design shape geometry and membrane material properties. A Finite Element Analysis (FEA) of the sail structure and a Computational Fluid Dynamics (CFD) model of the aerodynamic field are combined and iteratively solved to compute the actual flying shape of the sail under aerodynamic load, the stress strain behavior of the sail membrane, the integrated aerodynamic forces produced by the sail such as driving force and heel moment, and the resulting loads on sheets, halyards, etc. An important contribution of this particular method is the incorporation of wrinkling phenomena into the FEA portion of the calculation. Results from a study of working sails for a 30’ MORC racing yacht designed by Nelson-Marek (NM) in the 1990’s are presented and discussed with particular emphasis on the variability of primary load paths with changing trim and sailing conditions as well as the impact of sail deformation in the direction of relatively small stresses that is often poorly addressed in many proprietary sail construction methods.


2018 ◽  
Vol 8 (1) ◽  
pp. 20-26
Author(s):  
Asim Rizvi ◽  
Sean T. Fitzgerald ◽  
Kent D. Carlson ◽  
Dan Dragomir Daescu ◽  
Waleed Brinjikji ◽  
...  

Background: “Remote aspiration,” using suction from the proximal internal carotid artery (ICA) to open terminus occlusions, has been reported in small case series. However, it remains unclear whether remote aspiration is feasible for middle cerebral artery occlusions in the setting of potential inflow from communicating arteries. We performed an in vitro study to assess whether suction applied at various locations proximal to an occlusion could successfully aspirate the clot. Methods: A glass model of 4 mm inner diameter (ID) with 1 mm distal narrowing and 2 mm side branch to simulate a communicating artery was constructed. A proximal side branch was placed to simulate inflow from the proximal ICA. The impact of three different-sized catheters (ID 0.088, 0.070, and 0.056 in) on histologically different (red blood cell-cell rich, fibrin-rich, and mixed) clot analogues was tested with the catheter tip placed remotely either distal or proximal to the collateral branch. Aspiration was attempted with (1) open system (flow in both the ICA and the collateral branch, (2) flow arrest with open collateral (no flow in the ICA, but flow in the collateral branch), and (3) closed system (no flow in either the ICA or the collateral branch). The outcome was success or failure of remote aspiration. Results: For the 0.088-in catheter, remote aspiration was successful in all conditions. For the 0.070-in catheter, remote aspiration was unsuccessful without proximal flow arrest, but was successful in all other scenarios. For the 0.056-in catheter, remote aspiration was successful only with complete flow arrest. Conclusions: In a noncollapsible system, remote aspiration can be successfully achieved even in the setting of prominent branch arteries by using relatively large aspiration catheters. Proximal flow arrest may facilitate successful remote aspiration for some catheter sizes.


Sign in / Sign up

Export Citation Format

Share Document