scholarly journals CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES

2022 ◽  
Vol 23 (1) ◽  
pp. 384-395
Author(s):  
Jonathan Fábregas ◽  
Henry Santamaria ◽  
Edgardo Buelvas ◽  
Saul Perez ◽  
Carlos Díaz ◽  
...  

 A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, a pressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic devices was evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional. ABSTRAK: Simulasi penyejukan alatan elektronik telah dibina menggunakan saluran mikro, di samping air sebagai agen penyejuk bagi menghilangkan haba yang terhasil dari pemproses komputer, dan penstabil pada suhu operasi optimum. Kajian ini mengenai model komputasi mekanik bendalir bagi menentukan profil suhu, profil tekanan, dan halaju perubahan bendalir dalam saluran mikro. Dapatan kajian menunjukkan suhu operasi pemproses komputer adalah pada julat suhu 303 K sehingga 307 K, dengan halaju bendalir dalam saluran mikro adalah pada kelajuan 5 m/s, penurunan tekanan sebanyak 633.7 kPa, dan faktor keselamatan 15 bagi reka bentuk saluran mikro. Ini menunjukkan terdapat kenaikan pemindahan haba bagi sistem penyejukan alatan elektronik ini, terutama apabila cecair digunakan sebagai penyejuk haba berbanding kaedah tradisi iaitu dengan mengguna pakai aliran udara sebagai agen penyejuk.

Author(s):  
Tushara Pasupuleti ◽  
Satish G. Kandlikar

An approach towards practical application of microchannel cooling system is necessary as the demand of high power density devices is increasing. Colgan et. al. [1] have designed a unit known as Single Chip Module (SCM) by considering the practical issues for packaging a microchannel cooling system with a microelectronic device. The performance of the SCM has already been investigated by using water as working fluid by Colgan et. al. [1]. Considering the actual working conditions, water cannot be used in electronic devices as the working fluid because any leakage may lead to system damage. Alternative fluids like refrigerants were considered. In this research, the performance of SCM has been studied by using refrigerant R-123 as working fluid and compared with water cooled system. Cooling of 83.33 W/cm2 has been achieved for a powered area of 3 cm2 by maintaining chip temperature of 60°C. The heat transfer co-efficient obtained at a flowrate of 0.7 lpm was 34.87 kW/m2-K. The results obtained indicate that from a thermal viewpoint, R-123 can be considered as working fluid for microelectronic cooling devices.


Author(s):  
Tomonao Takamatsu ◽  
Katsumi Hisano ◽  
Hideo Iwasaki

In this paper is presented the results on performance of the cooling model using Loop Heat Pipe (LHP) system. In recent years, ever-ending demand of high performance CPU led to a rapid increase in the amount of heat dissipation. Consequently, thermal designing of electronic devices need to consider some suitable approach to achieve high cooling performance in limited space. Heat Pipe concept is expected to serve as an effective cooling system for laptop PC, however, it suffered from some problems as follows. The heat transport capability of conventional Heat Pipe decreases with the reduction in its diameter or increase in its length. Therefore, in order to use it as cooling system for future electronic devices, the above-mentioned limitations need to be removed. Because of the operating principle, the LHP system is capable of transferring larger amount of heat than conventional heat pipes. However, most of the LHP systems suffered from some problems like the necessity of installing check valves and reservoirs to avoid occurrence of counter flow. Therefore, we developed a simple LHP system to install it on electronic devices. Under the present experimental condition (the working fluid was water), by keeping the inside diameter of liquid and vapor line equal to 2mm, and the distance between evaporator and condenser equal to 200mm, it was possible to transport more than 85W of thermal energy. The thickness of evaporator was about 5mm although it included a structure to serve the purpose of controlling vapor flow direction inside it. Successful operation of this system at inclined position and its restart capability are confirmed experimentally. In order to make the internal water location visible, the present LHP system is reconstructed using transparent material. In addition, to estimate the limit of heat transport capability of the present LHP system using this thin evaporator, the air cooling system is replaced by liquid cooling one for condensing device. Then this transparent LHP system could transport more than 100W of thermal energy. However, the growth of bubbles in the reserve area with the increase in heat load observed experimentally led to an understanding that in order to achieve stable operation of the LHP system under high heat load condition, it is very much essential to keep enough water in the reserve area and avoid blocking the inlet with bubbles formation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bui Hung Thang ◽  
Pham Van Trinh ◽  
Nguyen Van Chuc ◽  
Phan Hong Khoi ◽  
Phan Ngoc Minh

Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m·Kcompared with thermal conductivity of Ag 419 W/m·K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU’s temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU’s temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for theμ-processor and other high power electronic devices.


Author(s):  
Muhammad Arif Harun ◽  
Nor Azwadi Che Sidik

Electronic devices are becoming more efficient while getting a smaller size and compact design thus increase heat generation significantly. High heat generation from high technology electronic devices are needed to be cool down or control its temperature to prevent overheating problems. Due to the high cooling performance of liquid cooling, the electronic cooling system is shifting from an air-cooling system to a liquid cooling system. In the past few decades, numerous methods proposed by researchers for the central process unit (CPU) cooling using the liquid system either active cooling or passive cooling system. Other than physical configuration such as heat sink design, different configurations of working fluids are widely been studied by most of the researchers. Different working fluids have different heat transfer performance. Furthermore, a recent study has come out more interesting finding using nanofluid which can enhance heat transfer performance of liquid cooling. Nanofluid is a working fluid that has nanoparticles disperse in the base fluid which can increase the thermal properties of the based fluid. In this paper, comprehensive literature on the type of working fluid used in the respective system and methods of liquid cooling system for CPU including its cooling performance. Furthermore, this review paper discussed the different configuration of the liquid block and also the working fluid that had been used in the CPU cooling system.


2004 ◽  
Vol 11 (4) ◽  
pp. 407-416 ◽  
Author(s):  
Xuegong Hu ◽  
Yaohua Zhao ◽  
Xiaohong Yan ◽  
T. Tsuruta

2021 ◽  
Vol 09 (03) ◽  
pp. E482-E486
Author(s):  
Stanislas Chaussade ◽  
Einas Abou Ali ◽  
Rachel Hallit ◽  
Arthur Belle ◽  
Maximilien Barret ◽  
...  

Abstract Background and study aims The role that air circulation through a gastrointestinal endoscopy system plays in airborne transmission of microorganisms has never been investigated. The aim of this study was to explore the potential risk of transmission and potential improvements in the system. Methods We investigated and described air circulation into gastrointestinal endoscopes from Fujifilm, Olympus, and Pentax. Results The light source box contains a lamp, either Xenon or LED. The temperature of the light is high and is regulated by a forced-air cooling system to maintain a stable temperature in the middle of the box. The air used by the forced-air cooling system is sucked from the closed environment of the patient through an aeration port, located close to the light source and evacuated out of the box by one or two ventilators. No filter exists to avoid dispersion of particles outside the processor box. The light source box also contains an insufflation air pump. The air is sucked from the light source box through one or two holes in the air pump and pushed from the air pump into the air pipe of the endoscope through a plastic tube. Because the air pump does not have a dedicated HEPA filter, transmission of microorganisms cannot be excluded. Conclusions Changes are necessary to prevent airborne transmission. Exclusive use of an external CO2 pump and wrapping the endoscope platform with a plastic film will limit scatter of microorganisms. In the era of pandemic virus with airborne transmission, improvements in gastrointestinal ventilation systems are necessary to avoid contamination of patients and health care workers.


1992 ◽  
Vol 46 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Yunke Zhang ◽  
Marianna A. Busch ◽  
Kenneth W. Busch

Gas-phase infrared emission measurements made with the use of a new, specially designed, electrically heated furnace or a small hydrogen/air flame have shown that oxidation of a variety of carbon-based analytes to CO2 over the catalyst hopcalite prior to vibrational excitation in the furnace or flame markedly improves the response of the FIRE radiometer. Calibration curves obtained with the use of the furnace alone were generally nonlinear, while those obtained with the flame alone had slopes that were compound dependent. By the use of hopcalite in conjunction with the furnace, conversion to CO2 was significantly improved, and the FIRE response to pure acetone, benzene, dichloromethane, 1-chloro-2-methylpropane, heptane, methanol, and toluene became directly proportional to the number of moles of carbon introduced. In the case of the flame, as little as 0.1 g of hopcalite was sufficient to give a single, linear calibration curve (based on moles of carbon) for injection volumes of 0.2–1.0 μL of a test mixture composed of equal volumes of acetone, benzene, hexane, propanol, and tetrahydrofuran. With the use of hopcalite at its experimentally determined, optimum operating temperature of 380°C, an air flow rate of 45 mL min−1, and a furnace temperature of 600°C, the detection limit for hexane was found to be 518 ng C s−1. The use of hopcalite in conjunction with the flame (900°C) improved this detection limit by two orders of magnitude, due to the combined effects of an increase in excitation temperature and a decrease in source background noise. Injection of chlorinated compounds was found to temporarily poison the hopcalite, resulting in soot formation and loss of catalytic activity for periods of approximately ten minutes.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
R. Mazón-Hernández ◽  
J. R. García-Cascales ◽  
F. Vera-García ◽  
A. S. Káiser ◽  
B. Zamora

The main priority in photovoltaic (PV) panels is the production of electricity. The transformation of solar energy into electricity depends on the operating temperature in such a way that the performance increases with the decreasing temperatures. In the existing literature, different cooling techniques can be found. The purpose of most of them is to use air or water as thermal energy carriers. This work is focused on the use of air as a working fluid whose movement is either induced by natural convection or forced by means of a fan. The aim of this study is to characterise the electrical behaviour of the solar panels in order to improve the design of photovoltaic installations placed in roof applications ensuring low operating temperatures which will correct and reverse the effects produced on efficiency by high temperature. To do this, a test installation has been constructed at the Universidad Politécnica de Cartagena in Spain. In this paper, the results of the tests carried out on two identical solar panels are included. One of them has been modified and mounted on different channels through which air flows. The different studies conducted show the effects of the air channel cross-section, the air velocity, and the panel temperature on the electrical parameters of the solar panels, such as the voltage, current, power, and performance. The results conclude that the air space between the photovoltaic panels and a steel roof must be high enough to allow the panel to be cooled and consequently to achieve higher efficiency.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


Sign in / Sign up

Export Citation Format

Share Document