scholarly journals MECHANICAL ENERGY SCAVENGING FROM FLYING INSECTS

Author(s):  
E.E. Aktakka ◽  
H. Kim ◽  
M. Atashbar ◽  
K. Najafi
2020 ◽  
Vol 2 (2) ◽  
pp. 746-754 ◽  
Author(s):  
Venkateswaran Vivekananthan ◽  
Arunkumar Chandrasekhar ◽  
Nagamalleswara Rao Alluri ◽  
Yuvasree Purusothaman ◽  
Sang-Jae Kim

A water proof silicone elastomer based triboelectric nanogenerator for bio-mechanical energy scavenging and a zero-power consuming/self-powered pressure sensor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ammar Ahmed ◽  
Ali Azam ◽  
Yanen Wang ◽  
Zutao Zhang ◽  
Ning Li ◽  
...  

AbstractAdditively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5–32 mW, 0.0002–45.6 mW, and 0.3–4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper. Graphical Abstract


2013 ◽  
Vol 328 ◽  
pp. 827-830
Author(s):  
Qiang Gao ◽  
Chun Xia Gao

Mechanical energy scavenging from ambient environments is an attractive renewable source of power for various applications. In this work, biocompatible Pb-free ceramic nanofibrous assembles were successfully prepared via electrospinning. The electrospun precursor nanofibers werein-situstretched, poled during the eletrospinning process and aligned on the high-speed rotating collector. Moreover, XRD pattern of obtained BaTiO3nanofibers showed well-defined perovskite peaks with higher intensity and no detectable secondary phases which are potentially used for nanogenerators.


Author(s):  
D. Sathisha, Et. al.

The process of generation of mechanical energy of human footsteps and converting into electrical energy using piezoelectric transducer is discussed in this paper. This method of generation comes under the Energy scavenging section of renewable resources where wasted energy during regular processes such as heat during exothermic reactions is captured and converted. With the increase in energy consumption from handy electronic devices, the concept of harvesting alternative non-conventional energy in highly density population regions is a new interest of late. The model is a focused spring action between two tiles on to the piezoelectric transducers. This model contracts during a footstep and therefore allowing the mechanical input onto the transducers and converting this input into electrical output. This process is focused on footsteps upon multiple units across a pathway to generate maximum output with minimal monitoring. This type of generator is simply a secondary backup to coal or hydro power generation. The main feature of such generator is that this requires no conscious thought on the user’s part.


Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105919
Author(s):  
Yiding Song ◽  
Nan Wang ◽  
Chaosheng Hu ◽  
Zhong Lin Wang ◽  
Ya Yang

2011 ◽  
Vol 403-408 ◽  
pp. 3839-3846
Author(s):  
Harkanwal Singh ◽  
Choudhary Mayur Lalchand

For consistent remote health monitoring to be realized, power source must be independent of time factor. We require small, inexpensive, ubiquitous sensors to be realized, all constituents of the device, including the power source, must be directly integrable. For long term application the device must be capable of scavenging power from its surrounding environment. An apparent solution lies in conversion of mechanical energy produced by body movements to electrical energy. Here, we propose a health monitoring system utilizing energy scavenging from body movements for signal transmission through wireless antenna.


Author(s):  
Sean Gauntt ◽  
Gregory Batt ◽  
James Gibert

Electret based energy scavenging devices utilize electro-static induction to convert mechanical energy into electrical energy. Uses for these devices include harvesting ambient energy in the environment and acting as sensors for a range of applications. These types of devices have been used in MEMS applications for over a decade. However, recently there is an interest in triboelectric generators/harvesters, i.e., electret based harvesters that utilize triboelectrification as well as electrostatic induction. The literature is filled with a variety of designs for the latter devices, constructed from materials ranging from paper and thin films; rendering the generators lightweight, flexible and inexpensive. However, most of the design of these devices is ad-hoc and not based on exploiting the underlying physics that govern their behavior; the few models that exist neglect the coupled electromechanical behavior of the devices. Motivated by the lack of a comprehensive dynamic model of these devices this manuscript presents a generalized framework based on a Lagrangian formulation to derive electromechanical equation for a lumped parameter dynamic model of an electret-based harvester. The framework is robust, capturing the effects of traditional MEMS devices as well as triboelectric generators. Exploiting numerical simulations the predictions are used to examine the behavior of electret based devices for a variety of loading conditions simulating real-world applications such as power scavengers under simple harmonic forcing and in pedestrian walking.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


Sign in / Sign up

Export Citation Format

Share Document