scholarly journals Composition of Seeds Obtained from Non-nodulating and Nodulating Peanut Lines and Cultivars1

1982 ◽  
Vol 9 (1) ◽  
pp. 50-52 ◽  
Author(s):  
S. K. Pancholy ◽  
S. M. M. Basha ◽  
D. W. Gorbet

Abstract The composition of seeds obtained from non-nodulating and nodulating peanut lines was studied. Peanut samples from the non-nodulating genotype were low in oil and protein, high in α-amino nitrogen, soluble carbohydrates, and the amino acids lysine, alanine, methionine, and threonine as compared to its nodulating parental lines and ‘Florunner’. No differences however, were noted in iodine value of the oil. Peanuts from the non-nodulating line were also found to have higher activities of the hydrolytic enzymes leucine aminopeptidase and acid phosphatase.

1959 ◽  
Vol 5 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Mark J. Hannibal ◽  
Marvin M. Nachlas

This report describes additional studies of the lyo and desmo components of esterase, alkaline phosphatase, acid phosphatase, leucine aminopeptidase, and ß-glucuronidase. The techniques used have already been reported (7). Enzyme diffusion occurs to different degrees in different fixatives, and varies somewhat with each enzyme. Loss of enzymatic activity during fixation occurs as a result of both inactivation due to the chemical reaction of the fixative with the enzymic protein, and diffusion of the lyo component into the fixative. The amount of diffusion into formalin can be reduced by the addition of salts, sucrose, or methocel. The pH of the aqueous medium significantly influences the removal of the lyo fraction from the tissue section. A striking similarity can be noted in the proportions of each fraction of enzyme present in the kidney of the rat, dog, and man. The procedure of fixation and paraffin embedding of tissue blocks does not wholly prevent the diffusion of the lyo component from the tissue sections when they are subsequently immersed in the aqueous incubation medium.


1944 ◽  
Vol 79 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Frank L. Engel ◽  
Helen C. Harrison ◽  
C. N. H. Long

1. In a series of rats subjected to hemorrhage and shock a high negative correlation was found between the portal and peripheral venous oxygen saturations and the arterial blood pressure on the one hand, and the blood amino nitrogen levels on the other, and a high positive correlation between the portal and the peripheral oxygen saturations and between each of these and the blood pressure. 2. In five cats subjected to hemorrhage and shock the rise in plasma amino nitrogen and the fall in peripheral and portal venous oxygen saturations were confirmed. Further it was shown that the hepatic vein oxygen saturation falls early in shock while the arterial oxygen saturation showed no alteration except terminally, when it may fall also. 3. Ligation of the hepatic artery in rats did not affect the liver's ability to deaminate amino acids. Hemorrhage in a series of hepatic artery ligated rats did not produce any greater rise in the blood amino nitrogen than a similar hemorrhage in normal rats. The hepatic artery probably cannot compensate to any degree for the decrease in portal blood flow in shock. 4. An operation was devised whereby the viscera and portal circulation of the rat were eliminated and the liver maintained only on its arterial circulation. The ability of such a liver to metabolize amino acids was found to be less than either the normal or the hepatic artery ligated liver and to have very little reserve. 5. On complete occlusion of the circulation to the rat liver this organ was found to resist anoxia up to 45 minutes. With further anoxia irreversible damage to this organ's ability to handle amino acids occurred. 6. It is concluded that the blood amino nitrogen rise during shock results from an increased breakdown of protein in the peripheral tissues, the products of which accumulate either because they do not circulate through the liver at a sufficiently rapid rate or because with continued anoxia intrinsic damage may occur to the hepatic parenchyma so that it cannot dispose of amino acids.


2021 ◽  
Author(s):  
Irina Gaivoronskaya ◽  
Valenitna Kolpakova

The aim of the work was to optimize the process of obtaining multicomponent protein compositions with high biological value and higher functional properties than the original vegetable protein products. Was realized studies to obtain biocomposites on the base of pea protein-oat protein and pea protein-rice protein. Developed composites were enriched with all limited amino acids. For each of the essential amino acids, the amino acid score was 100% and higher. Protein products used in these compositions are not in major allergen list, which allows to use these compositions in allergen-free products and specialized nutrition. To determine biosynthesis parameters for compositions from pea protein and various protein concentrates with the use of transglutaminase enzyme, was studied effect of concentration and exposition time on the amount of amino nitrogen released during the reaction. Decreasing of amino nitrogen in the medium indicated the occurrence of a protein synthesis reaction with the formation of new covalent bonds. Were determined optimal parameters of reaction: the hydromodule, the exposure time, the concentration of EP of the preparation, were obtained mathematical models. Studies on the functional properties of composites, the physicochemical properties of the proteins that make up their composition, and structural features will make it possible to determine the uses in the manufacture of food products based on their ability to bind fat, water, form foam, gels, and etc.


2001 ◽  
Vol 13 (3) ◽  
pp. 270-284 ◽  
Author(s):  
CLAUDIVAN FEITOSA DE LACERDA ◽  
JOSÉ CAMBRAIA ◽  
MARCO ANTONIO OLIVA CANO ◽  
HUGO ALBERTO RUIZ

Seedlings of two sorghum (Sorghum bicolor (L.) Moench) genotypes with differential tolerance to salinity were exposed to 0 and 100 mM NaCl, gradually added in increments of 25 mM every 12 hours, in nutrient solution. Seven days after starting the salt treatment the growth of the shoot and root system and the inorganic and organic solutes contents were determined. Salinity reduced the dry matter yield and length of the shoot and root system in both sorghum genotypes, specially in the sensitive one. In general, it was observed an increase in Na+ and Cl- transfer to the shoot, in Na+ and Cl- accumulation and in the Na+/Cl- ratio but a decrease in the K+ and Ca2+ transfer to shoot and in the K+ and Ca2+ contents in the shoot, always with higher intensity in sensitive genotype. Apparently, the tolerance to high saline concentrations in sorghum seems to be related to the genotype ability to avoid accumulation of harmful levels of Na+ and Cl- and, or to maintain adequate levels of K+ and Ca2+, specially in the shoot. The soluble carbohydrates and amino acids constituted together over 98% of the total organic solutes and showed the greatest absolute increase in concentration during saline stress. Probably, the soluble carbohydrates were the most important organic solutes to contribute to the osmotic adjustment in the leaves and the amino acids in the roots. Under saline stress there was an expressive increase in proline contents, specially in the oldest leaves of sensitive genotype. The proline contents, however, even under salt stress, did not reach the levels of other organic solutes. Contrary to the general acceptance, proline does not seem to have an important role in the mechanism of salt tolerance, at least for these genotypes and under the experimental conditions applied here.


Analyses of the alimentary contents flowing to the duodenum of sheep during 24 h show that when the sheep are consuming a low-nitrogen diet more total nitrogen and amino nitrogen pass to the duodenum than are eaten daily in the food whereas when the sheep are eating high nitrogen diets, less total nitrogen and less amino nitrogen pass to the duodenum. The disparity between the total nitrogen and amino nitrogen content of the diets largely disappeared by the time the alimentary contents reached the terminal part of the ileum. From 64 to 68% of the nitrogen entering the duodenum and 54 to 64% of the nitrogen in the ileal contents was in the form of amino nitrogen. Proportionately more of the amino nitrogen was in solution in the ileal contents than in the duodenal contents. Losses of amino acids in the stomach when a high-nitrogen diet was consumed were especially large for glutamic acid, aspartic acid, proline, arginine and leucine. They were least for cystine and threonine. Gains of amino acids in the stomach when low nitrogen diets were consumed were all substantial except for proline, where a loss was found when hay and flaked maize were given. When these changes are considered as proportions of the quantities eaten then trends are similar for all acids. Changes in the molar proportions of the amino acids present in hydrolysates of the duodenal and ileal contents are discussed together with the significance of these changes in relation to the nutrition of the sheep.


Weed Science ◽  
1973 ◽  
Vol 21 (4) ◽  
pp. 310-313 ◽  
Author(s):  
Larry S. Jeffery ◽  
John D. Nalewaja

Fumitory (Fumaria officinalisL.) achenes were after-ripened in moist sand at 4 C for 0, 15, 30, 45, and 60 days. Embryo size in longitudinal section increased 14 times during after-ripening. The percentage of ether soluble lipids and their fatty acids remained constant during the entire after-ripening period. Soluble carbohydrates were the highest at the 45-day period of after-ripening when embryo growth was rapid. The concentration of 70% ethyl alcohol soluble amino acids increased gradually over the first 45 days of after-ripening and decreased over the last 15 days as embryo growth became more rapid.


1975 ◽  
Vol 21 (10) ◽  
pp. 1437-1440 ◽  
Author(s):  
Christopher W I Owens ◽  
Walfredo Padovan

Abstract We describe a method for quantitatively estimating 24 ninhydrin-reacting substances, including the commoner amino acids, in fecal dialysate prepared from ingested dialysis bags retrieved from fresh stool. It is accurate to 2 µmol of α-amino nitrogen per liter of fecal dialysate, and for most substances recovery of added standards is 100%. It involves dilution, ultrafiltration, and automated ion-exchange column chromatography of the dialysate. Some normal values are provided.


1987 ◽  
Vol 65 (6) ◽  
pp. 1445-1453 ◽  
Author(s):  
M. Samuel Cannon ◽  
H. W. Sampson ◽  
E. D. Kapes

Blood leukocytes of Bufo marinus were studied by light and phase-contrast microscopy and histochemical techniques for the localization of glycogen, lipids, several basic proteins, and a number of hydrolytic and oxidative enzymes. The hydrolytic enzymes occurred in varying amounts in neutrophils, eosinophils, lymphocytes, and monocytes; neutrophils were the only leukocytes to demonstrate alkaline phosphatase activity, while β-glucuronidase was only seen in lymphocytes, and aryl-sulfatase was not observed in any leukocytes. Periodic acid – Schiff (PAS) positive granules also occurred in varying amounts in leukocytes. Slight lipid activity was only seen in neutrophils, while arginine, and (or) lysine, and tyrosine reactivity was only observed in eosinophils. The appearance and histochemical reactivity of acid phosphatase granules in neutrophils corresponded closely with the appearance and number of specific neutrophilic granules seen in Wright–Giemsa preparations and with the PAS-positive granules. Small lymphocytes were myeloperoxidase (peroxidase) negative; β-glucuronidase, acid phosphatase, and PAS-positive granules corresponded to neutral red granules seen in supravital films. The oxidative enzymes also occurred in differing amounts in leukocytes, but strongly suggested that the leukocytes of Bufo marinus are capable of some degree of aerobic and anaerobic metabolism.


1971 ◽  
Vol 51 (1) ◽  
pp. 29-33 ◽  
Author(s):  
R. G. ROSS ◽  
FRANCES D. J. BREMNER

Perithecia of Venturia inaequalis did not form in a basal medium to which was added ammonium sulfate, chloride, phosphate or tartrate as the sole sources of nitrogen, when the pH of the medium was allowed to fall to inhibitory levels. Perithecia formed with these ammonium salts as nitrogen sources when calcium carbonate was added to control the pH. With ammonium carbonate and oxalate there was no appreciable change in pH, and perithecia formed with these salts as nitrogen sources. Perithecia did not form in media with leucine as a nitrogen source. Formation of perithecia with other amino acids depended on the concentration of amino-nitrogen in the media. A substance toxic to perithecial formation may form in cultures containing leucine; if so, it is produced in different amounts by the two isomers and the racemic mixture of this amino acid.


Sign in / Sign up

Export Citation Format

Share Document