scholarly journals Irrigated and Non-Irrigated Peanut (Arachis hypogaea L.) Cultivar Response to Postemergence Paraquat Tank-Mixtures

2019 ◽  
Vol 46 (1) ◽  
pp. 50-55
Author(s):  
K.M. Eason ◽  
R.S. Tubbs ◽  
T.L. Grey ◽  
X.S. Li

ABSTRACT Paraquat postemergence (POST) applied is often used to control broadleaf and grass weed species in peanut in the Southeast US. The objective of this study was to determine the effects of POST herbicide tank-mixtures including paraquat on vegetation, yield, and grade for runner-type peanut cultivars under irrigated and non-irrigated conditions. Two separate experiments (irrigated and non-irrigated) were conducted in 2016 and 2017 in Ty Ty and Plains Georgia. Georgia-06G, Georgia-14N, TUFRunner™ ‘511’, and FloRun™ ‘157’ cultivars were evaluated. Herbicide tank-mixtures included paraquat, paraquat plus acifluorfen plus bentazon, paraquat plus acifluorfen plus bentazon plus S-metolachlor, and paraquat plus acifluorfen plus bentazon plus acetochlor. Leaf burn, stunting injury, yield, and grade were evaluated. There were no interactions between herbicide and cultivar for all variables. Paraquat alone resulted in significantly greater foliar injury (3 DAT) than the other herbicide treatments for the irrigated (34 to 16%) and non-irrigated (28 to 15%) studies. Stunting for paraquat alone was noted at 15 and 35% for irrigated and non-irrigated, respectively. Similarly, in both studies, Georgia-06G and TUFRunner™ ‘511’ yielded 10 to 12% greater than Georgia-14N and FloRun™ ‘157’. Overall, the herbicide tank-mixtures did not have a negative effect on yield. With no interactions observed, these herbicide treatments can be used in conjunction with the given runner-type peanut cultivars in either irrigated or non-irrigated conditions without concern for excessive injury or decline in yield or grade.

2020 ◽  
Vol 47 (2) ◽  
pp. 94-102
Author(s):  
K.M. Eason ◽  
T.L Grey ◽  
R.S. Tubbs ◽  
E.P. Prostko ◽  
X. Li

ABSTRACT Weed control is an integral part of peanut (Arachis hypogaea L.) production systems. Paraquat is a staple postemergence (POST) herbicide used in peanut production in the Southeast US. Inorganic liquid nutrient (ILN) concentrates are liquid fertilizers that are recommended for use by producers in tank-mixtures with paraquat by some distributors. Irrigated and non-irrigated field trials were conducted to quantify the safening effect of ILN in various herbicide tank-mixtures on peanut and determine the suitability as tank-mix replacements for bentazon. Field studies indicated similar POST herbicide responses for peanut injury. Greenhouse experiments evaluated POST paraquat tank-mixtures with ILN for weed control and biomass reduction. Paraquat plus S-metolachlor caused significant leaf burn and stunting. Greatest peanut foliar injury occurred 3 d after treatment (DAT) but was transient. For the irrigated field trial, paraquat plus S-metolachlor plus ILN had similar injury levels as compared to paraquat plus S-metolachlor plus acifluorfen plus bentazon at 22 to 25%. For the non-irrigated field study, the application of paraquat plus ILN had 10% injury compared to paraquat at 22%. While injury was the greatest directly following application, peanut was able to recover with no yield or grade loss for both the irrigated and non-irrigated studies. In the greenhouse study, the effect of ILN varied by weed species and reduced leaf injury on several broadleaf weeds. While the addition of ILN to the various paraquat tank-mixtures initially reduced injury, it did not correspond to increases in yield or grade. The variability in weed control, transient injury mitigation, and no yield increase indicates that Georgia peanut growers will receive no benefit for including ILN in their paraquat tank-mixtures but if needed to improve crop nutrition, ILN will not reduce weed control.


1991 ◽  
Vol 18 (2) ◽  
pp. 67-71 ◽  
Author(s):  
G. Wehtje ◽  
J. W. Wilcut ◽  
J. A. McGuire ◽  
T. V. Hicks

Abstract Field studies were conducted over a three year period to examine the sensitivity of four peanut (Arachis hypogaea L.) cultivars (Florunner, Sunrunner, Southern runner, and NC 7) to foliar applications of paraquat (1, 1′-dimethyl-4, 4′-bipyridinium ion). Treatments included an untreated control and four herbicide treatments: paraquat applied alone at 0.14 and 0.28 kg/ha, or tank mixed with alachlor [2-chloro-N-(2, 6-diethylphenyl)-N-(methoxymethyl)acetamide] at 4.40 kg/ha. Weeds were hand-removed so that only herbicidal treatments were variables. Paraquat phytotoxicity did not differ between cultivars. No cultivar evaluated was abnormally sensitive nor tolerant to any paraquat-containing treatment. Laboratory studies utilizing radio labelled paraquat revealed that foliar absorption and translocation of paraquat did not vary between peanut cultivars. Yield differences were attributed to differences in yield potential between cultivars.


2003 ◽  
Vol 83 (3) ◽  
pp. 645-648 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
T. Cowan ◽  
P. Sikkema

There is little information on the tolerance of cranberry beans to preplant incorporated (PPI) and preemergence (PRE) applications of s-metolachlor and imazethapyr, eithe r alone or in tank mix combination, for selective weed control in cranberry beans in Ontario. Tolerance of two cranberry bean cultivars, Hooter and SVM Taylor, to PPI and PRE applications of s-metolachlor, imazethapyr and their tank mix combination at the label rate (1×) and twice the label rate (2× ) were studied at two Ontario locations (Exeter and Ridgetown) in 2001 and 2002. There were no differences between the two cultivars in their responses to the herbicide treatments. PPI and PRE applications of s-metolachlor alone at the 1× and 2× rate had no effect on visual crop injury and no negative effect on plant height, dry weight and yield compared to the control. The PPI and PRE applications of imazethapyr at the 1× rate did not result in significant visual crop injury, and had no negative effect on bean height and dry weight, but at the 2× rate there was significant visual crop injury, a decrease in height with the PPI application and decreased dry weight with PPI and PRE applications. No negative effect o n cranberry bean yield was observed with the application of imazethapyr at either the 1× or 2× rates. The PPI and PRE applications of the tank mix of s-metolachlor plus imazethapyr at the 1× rate did not result in significant visual crop injury or decreases in bean plant height or dry weight. At the 2× rate, there was significant visual crop injury, a decrease in bean plant height with PPI and PRE applications and decreased dry weight with the PPI application. The tank mix of s-metolachlor plus imazethapyr at the 1× rate had no effect on yield, but the PPI application at the 2× rate caused a decrease in yield at 1 of the 4 site-years. Key words:


2016 ◽  
Vol 30 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Dennis C. Odero ◽  
Mathew Duchrow ◽  
Nikol Havranek

Fall panicum is the most troublesome annual grass weed in sugarcane in Florida. The critical timing of fall panicum removal in sugarcane or the maximum amount of early season interference that sugarcane can tolerate before it suffers irrecoverable yield loss is not known. Field studies were conducted from 2012 to 2015 in Belle Glade, FL to determine the critical timing of fall panicum removal and season-long interference in sugarcane. The effect of season-long fall panicum interference and critical timing of removal based on 5 and 10% acceptable yield loss (AYL) levels were determined by fitting a log-logistic equation to percentage millable stalk, cane, and sugar yield loss data. Millable stalks, cane, and sucrose yield decreased as the duration of fall panicum interference increased. Season-long interference of fall panicum resulted in 34 to 60%, 34 to 62%, and 44 to 60% millable stalk, cane, and sucrose yield loss, respectively. The critical timing of fall panicum removal based on 5 and 10% AYL for millable stalks was 5 to 9 wk after sugarcane emergence (WAE). At 5 and 10% AYL, the critical timing of fall panicum removal ranged from 5 to 9 WAE and 6 to 8 WAE for cane and sucrose yield loss, respectively. These results show that fall panicum is competitive with sugarcane early in the season, demonstrating the need for timely early-season control to reduce negative effect on yield.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


1996 ◽  
Vol 10 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Chae Soon Kwon ◽  
Donald Penner

Greenhouse studies showed that the mixed function oxidase inhibitor, piperonyl butoxide (PBO), tank-mixed with the sulfonylurea herbicides, nicosulfuron, primisulfuron, and thifensulfuron, in the absence of effective adjuvants enhanced herbicide activity on both broadleaf and grass weed species. Effective adjuvants for nicosulfuron were K-3000 for common lambsquarters, Sylgard® 309 Surfactant for velvetleaf, K-2000 for barnyardgrass, and K-2000, K-3000, and Scoil® methylated seed oil for giant foxtail control. K-3000 and Sylgard 309 enhanced velvetleaf control with primisulfuron and thifensulfuron. The 28% urea and ammonium nitrate (UAN) was more effective as an adjuvant with thifensulfuron for velvetleaf than for common lambsquarters control. The enhancement of sulfonylurea herbicide activity with PBO was most apparent when other adjuvants were least effective.


1995 ◽  
Vol 22 (2) ◽  
pp. 114-120 ◽  
Author(s):  
J. V. Altom ◽  
R. B. Westerman ◽  
D. S. Murray

Abstract Field experiments were conducted from 1991 to 1993 to evaluate eclipta, Eclipta prostrata L., control and peanut, Arachis hypogaea L., response to herbicide treatments. Fomesafen {5-[2-chloro-4-(trifluoro-methyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide} applied at cracking was the only preemergence-applied herbicide which provided season-long control (>84%). Herbicides applied postemergence were more effective when the eclipta was less than 5 cm in height. The most consistent early postemergence treatments were bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazm-4(3H)-one 2,2-dioxide], and bentazon + acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} + 2,4-DB [4-(2,4-dichloro-phenoxy)butanoic acid]. Various other early postemergence followed by late postemergence sequential treatments also were equally effective. Minor peanut injury was observed at the early season rating from several herbicides; however, all injury had disappeared by the late season rating. Eclipta control did not consistently improve peanut pod yield.


1987 ◽  
Vol 14 (1) ◽  
pp. 1-3 ◽  
Author(s):  
E. Monteverde-Penso ◽  
J. C. Wynne ◽  
T. G. Isleib ◽  
R. W. Mozingo

Abstract A comprehensive breeding procedure for peanut (Arachis hypogaea L.) consisting of three stages — till development of a genetically broad-based virginia-type population, recurrent selection without extensive crossing for continued population improvement, and isolation of pure lines from high yielding families at each cycle of selection was initiated in 1974. Forty S1 families in S3 generation were selected from each cycle of selection. Only five families from cycle 0 outyielded the check cultivar. Florigiant, whereas yield of all selected families from the next two cycles exceeded the yield of Florigiant. Pure lines isolated from high yielding cycle 0 families have yielded more than Florigiant in advanced yield trials. Use of this procedure provides a systematic approach in developing higher yielding peanut cultivars with a broad genetic base.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 567-572 ◽  
Author(s):  
Erick G. Begitschke ◽  
James D. McCurdy ◽  
Te-Ming Tseng ◽  
T. Casey Barickman ◽  
Barry R. Stewart ◽  
...  

Preemergence herbicides generally have a negative effect on hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] establishment. However, little is known about the effect they have on root architecture and development. Research was conducted to determine the effects of commonly used preemergence herbicides on ‘Latitude 36’ hybrid bermudagrass root architecture and establishment. The experiment was conducted in a climate-controlled greenhouse maintained at 26 °C day/night temperature at Mississippi State University in Starkville, MS, from Apr. 2016 to June 2016 and repeated from July 2016 to Sept. 2016. Hybrid bermudagrass plugs (31.6 cm2) were planted in 126-cm2 pots (1120 cm3) and preemergence herbicide treatments were applied 1 d after planting at the recommended labeled rate for each herbicide. Preemergence herbicide treatments included atrazine, atrazine + S-metolachlor, dithiopyr, flumioxazin, indaziflam, liquid and granular applied oxadiazon, S-metolachlor, pendimethalin, prodiamine, and simazine. Treatments were arranged in a completely randomized design with four replications. Plugs treated with indaziflam and liquid applied oxadiazon failed to achieve 50% hybrid bermudagrass cover by the end of the experiment. Of the remaining herbicide treatments, all herbicides other than granular applied oxadiazon and atrazine increased the number of days required to reach 50% cover (Days50). In addition, all herbicide treatments reduced root mass when harvested 6 weeks after treatment (WAT) relative to the nontreated. By 10 WAT, all treatments reduced root mass in run 1, but during run 2, only prodiamine, pendimethalin, simazine, atrazine + S-metolachlor, liquid applied oxadiazon, and indaziflam reduced dry root mass compared with the nontreated. At 4 WAT, all treatments other than simazine and granular applied oxadiazon reduced root length when compared with the nontreated. By 10 WAT, only dithiopyr, S-metolachlor alone, and indaziflam reduced root length when compared with the nontreated. No differences were detected in the total amounts of nonstarch nonstructural carbohydrates (TNSC) within the roots in either run of the experiment. Results suggest that indaziflam, dithiopyr, and S-metolachlor are not safe on newly established hybrid bermudagrass and should be avoided during establishment. For all other treatments, hybrid bermudagrass roots were able to recover from initial herbicidal injury by 10 WAT; however, future research should evaluate tensile strength of treated sod.


Author(s):  
Hikmat Hamid oglu Asadov ◽  
Sima Ajdar gizi Askerova

Pollution of sea waters is one of major attributes of coastal industrial centers and the norming of such emissions is one of major countermeasures. The assimilation capacity of sea waters is a major factor relevant at norming and planning of outflows into sea waters. At present time the synoptical method has been developed, which doesn’t require carrying out long time and repeated observing of the level of pollution of sea waters. This method has formed the basis for developing the integrated synoptical method for calculating sea water assimilation capacity. The suggested method provides for division of the sea waters into separated homogenous water masses. The aim of the study is to develop an inverse integrated synoptical method allowing synthesizing of such an optimum order for loading separate water masses with pollutants upon, at which the calculated total value of assimilation capacity would reach its maximum. The article shows the possibility of utilization of known synoptical method for determining assimilation capacity of sea waters in the inverse order, i.e. for calculating the maximum value of pollutant put into the fixed zone of sea waters, upon a condition of reaching the given amount of assimilation capacity and absence of essential negative effect on ecosystem. The task of calculating an optimum regime function of discrete type, upon which the integrated value of assimilation capacity would reach the maximum value, has been formulated. The solution of analogue equivalent of the formed optimization task is carried out using the Euler equation for a non-conditional variation optimization task, taking into account the accepted limitation condition. The recommendations on optimum loading of different sea water zones with determined type of pollutant have been given.


Sign in / Sign up

Export Citation Format

Share Document