scholarly journals MATHEMATICAL MODEL OF SPEED DATA TRANSMISSION FROM SEGMENT LENGTH OF SPECIALIZED G3-PLC DIGITAL NETWORK

Author(s):  
S. M. Babchuk ◽  
B. S. Nezamay

Power Line Communication (PLC) systems are actively evolving and becoming more and more widespread worldwide. They are used in the automation of technological processes, the organization of video surveillance systems and to control the "smart" home. The G3-PLC provides high-speed and high-reliability long-distance communication over the existing power grid. Due to the fact that G3-PLC provides the ability to transmit data including through transformers, infrastructure costs are reduced. In addition, the G3-PLC network can support IPv6, which will allow the G3-PLC to easily integrate into common IPv6-based communication lines in the future. G3-PLC-based bilateral communications networks can provide grid operators with intelligent monitoring and control capabilities. Operators will be able to monitor electricity consumption across the network in real time, apply variable tariff schedules and set limits on electricity consumption. In turn, consumers will be able to control electricity consumption in real time. By using variable tariffs, users can reduce their electricity consumption during peak use. The G3-PLC dedicated digital network can be used in process automation systems where traditional or traditional data transmission is difficult or impossible. As a result of the research, a polynomial mathematical model was found that best reflects the change in data rate depending on the length of the G3-PLC network segment. It is also found that for the simplified calculation, a linear model determined during the studies can be used. The established mathematical models of data transmission rate dependence on the segment length of the G3-PLC dedicated digital network will contribute to better design of G3-PLC-based networks.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1018 ◽  
Author(s):  
Zhiyuan Yin ◽  
Yan Zhou ◽  
Yongxin Li

In present seismic exploration wireless sensor systems with large acquisition channels, it is difficult to achieve a high data rate, high reliability and long distance in wireless data transmission simultaneously. In this paper, a wireless seismic exploration system using a dual-layer network is proposed. The dual-layer network is designed based on Wi-Fi and LTE, so that long-distance high-rate seismic data transmission with a high reliability can be achieved. In the proposed system, the sensor array is composed of two kinds of nodes, the gateway node and the collecting node. Based on the proposed nodes, collecting node positioning, seismic data acquisition, seismic local data storage and quasi real-time remote seismic data transmission can be realized. Reliability mechanisms have been put forward to deal with the exceptions. An experiment was carried out to test the data transmission efficiency of the proposed system. The results show that the seismic exploration wireless sensor system with a dual-layer network structure can achieve quasi real-time remote seismic data transmission with no packet loss.


2021 ◽  
Vol 26 (jai2021.26(2)) ◽  
pp. 42-53
Author(s):  
Hrabovskyi V ◽  
◽  
Kmet O ◽  

Program that searches for five types of fruits in the images of fruit trees, classifies them and counts their quantity is presented. Its creation took into account the requirement to be able to work both in the background and in real time and to identify the desired objects at a sufficiently high speed. The program should also be able to learn from available computers (including laptops) and within a reasonable time. In carrying out this task, the possibilities of several existing approaches to the recognition and identification of visual objects based on the use of convolutional neural networks were analyzed. Among the considered network archi-tectures were R-CNN, Fast R-CNN, Faster R-CNN, SSD, YOLO and some modifications based on them. Based on the analysis of the peculiarities of their work, the YOLO architecture was used to perform the task, which allows the analy-sis of visual objects in real time with high speed and reliability. The software product was implemented by modifying the YOLOv3 architecture implemented in TensorFlow 2.1. Object recognition in this architecture is performed using a trained Darknet-53 network, the parameters of which are freely available. The modification of the network was to replace its original classification layer. The training of the network modified in this way was carried out on the basis of Transfer learning technology using the Agrilfruit Dataset. There was also a study of the peculiarities of the learning process of the network under the use of different types of gradient descent (stochastic and with the value of the batch 4 and 8), as a result of which the optimal version of the trained network weights was selected for further use. Tests of the modified and trained network have shown that the system based on it with high reliability distin-guishes objects of the corresponding classes of different sizes in the image (even with their significant masking) and counts their number. The ability of the program to distinguish and count the number of individual fruits in the analyzed image can be used to visually assess the yield of fruit trees


2012 ◽  
Vol 490-495 ◽  
pp. 990-993
Author(s):  
Xiao Yan Zhang ◽  
Guo Liang Fan

The central control modular of liquid level data acquisition and transmission system based on CAN bus was introduced. The modular was controlled by PC for transmitting and receiving data to CAN units through the USB port by the USB2.0-CAN High Speed adapter card designed by CP2102 and SJAl000, and the CAN bus controller SJA1000 and CP2102 was controlled by single chip computer (SCC) AT89C51. The hardware interface circuits was introduced, and the software flowchart and PC application program was also designed. The result shows that the system has the advantages of strong real-time, high speed, high reliability, easily extending communication devices, Plug and Play supporting, and automatic configuration. Its communications quality is better than the traditional ones, such as RS232, RS485 et al., and it can be used as real-time monitor in industrial multiple devices.


2014 ◽  
Vol 513-517 ◽  
pp. 4248-4252 ◽  
Author(s):  
Yun Hang Zhu ◽  
Zhi Hui Deng

In recent years, the strategic significance of the oceans is growing as well as its research and development needs. The underwater wireless communication is becoming more and more important. The underwater acoustic communication is one of the few mediums which can conduct the underwater transmission over a long distance, and the multipath effect is the major obstacle of affecting the systems high speed and high reliability. The characteristics of underwater acoustic fading and coherent multi-path channel are studied, and the model of underwater acoustic spreading spectrum (SS) communication system is established. The affect of coding technique on the systems performance are analyzed in detail. The improved RAKE receiving technical solution is put forward, whose simulation analysis and data in different combining ways are given. It is proved that the scheme can better solve the problem of multipath interference in underwater acoustic transmission.


2013 ◽  
Vol 365-366 ◽  
pp. 658-661
Author(s):  
Ying Bo Cai ◽  
Huan Zha ◽  
Xue Tong Wei

Demand for high-speed fiber optic gyroscope data acquisition and real-time record, the design of the SD Card as storage medium to large capacity fiber optic gyro high - speed real - time acquisition and bulk storage systems, The system by applying the sd2.0 protocol and fat32 file systems in the system, enable real - time Data Acquisition of fiber optic gyro and large capacity storage. Experiments have shown that the system properly designed, easy to use, high reliability to meet the actual demand, is of important practical significance.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 180 ◽  
Author(s):  
Ha Quang Thinh Ngo ◽  
Thanh Phuong Nguyen ◽  
Hung Nguyen

The supervision and feeding of grazing livestock are always difficult missions. Since animals act based on habits, the real-time monitoring data logger has become an indispensable instrument to assist farmers in recognizing the status of livestock. Position-tracked and acoustic monitoring have become commonplace as two of the best methods to characterize feeding performance in ruminants. Previously, the existing methods were limited to desktop computers and lacked a sound-collecting function. These restrictions impacted the late interventions from feeders and required a large-sized data memory. In this work, an open-source framework for a data collector that autonomously captures the health information of farm animals is introduced. In this portable hardware, a Wireless Location Acoustic Sensing System (WiLASS) is integrated to infer the health status through the activities and abnormal phenomena of farming livestock via chew–bite sound identification. WiLASS involves the open modules of ESP32-WROOM, GPS NEO-6M, ADXL335 accelerometer, GY-MAX4466 amplifier, temperature sensors, and other signal processing circuits. By means of wireless communication, the ESP32-WROOM Thing micro-processor offers high speed transmission, standard protocol, and low power consumption. Data are transferred in a real-time manner from the attached sensing modules to a digital server for further analysis. The module of GPS NEO-6M Thing brings about fast tracking, high precision, and a strong signal, which is suitable for highland applications. Some computations are incorporated into the accelerometer to estimate directional movement and vibration. The GY-MAX4466 Thing plays the role of microphone, which is used to store environmental sound. To ensure the quality of auditory data, they are recorded at a minimum sampling frequency of 10 KHz and at a 12-bit resolution. Moreover, a mobile software in pocket devices is implemented to provide extended mobility and social convenience. Converging with a cloud-based server, the multi-Thing portable platform can provide access to simultaneously supervise. Message Queuing Telemetry Transport (MQTT) protocol with low bandwidth, high reliability, and bi-direction, and which is appropriate for most operating systemsOS, is embedded into the system to prevent data loss. From the experimental results, the feasibility, effectiveness, and correctness of our approach are verified. Under the changes of climate, the proposed framework not only supports the improvement of farming techniques, but also provides a high-quality alternative for poor rural areas because of its low cost and its ability to carry out a proper policy for each species.


Author(s):  
Nurul I. Sarkar ◽  
Ritchie Qi ◽  
Akbar Hossain

Asynchronous Transfer Mode (ATM) is a high-speed networking technology designed to support real-time applications such as voice and video over both wired and wireless networks. This type of network is being used by medium-to-large organizations and the Internet service providers as backbone network to carry data traffic over long-distance with a guaranteed quality of service (QoS). The guaranteed QoS is achieved through a point-to-point link between end users. While the performance of ATM network over wired network has been studied extensively, the performance of real-time traffic over an ATM-Wireless extension has not been fully explored yet. It is useful to be able to compare the performance of ATM network with and without wireless extension against various network performance metrics to find out the effect of wireless extension on system performance.


Sign in / Sign up

Export Citation Format

Share Document