Recognition and calculation of objects in images using YOLOv3 architecture

2021 ◽  
Vol 26 (jai2021.26(2)) ◽  
pp. 42-53
Author(s):  
Hrabovskyi V ◽  
◽  
Kmet O ◽  

Program that searches for five types of fruits in the images of fruit trees, classifies them and counts their quantity is presented. Its creation took into account the requirement to be able to work both in the background and in real time and to identify the desired objects at a sufficiently high speed. The program should also be able to learn from available computers (including laptops) and within a reasonable time. In carrying out this task, the possibilities of several existing approaches to the recognition and identification of visual objects based on the use of convolutional neural networks were analyzed. Among the considered network archi-tectures were R-CNN, Fast R-CNN, Faster R-CNN, SSD, YOLO and some modifications based on them. Based on the analysis of the peculiarities of their work, the YOLO architecture was used to perform the task, which allows the analy-sis of visual objects in real time with high speed and reliability. The software product was implemented by modifying the YOLOv3 architecture implemented in TensorFlow 2.1. Object recognition in this architecture is performed using a trained Darknet-53 network, the parameters of which are freely available. The modification of the network was to replace its original classification layer. The training of the network modified in this way was carried out on the basis of Transfer learning technology using the Agrilfruit Dataset. There was also a study of the peculiarities of the learning process of the network under the use of different types of gradient descent (stochastic and with the value of the batch 4 and 8), as a result of which the optimal version of the trained network weights was selected for further use. Tests of the modified and trained network have shown that the system based on it with high reliability distin-guishes objects of the corresponding classes of different sizes in the image (even with their significant masking) and counts their number. The ability of the program to distinguish and count the number of individual fruits in the analyzed image can be used to visually assess the yield of fruit trees

2012 ◽  
Vol 490-495 ◽  
pp. 990-993
Author(s):  
Xiao Yan Zhang ◽  
Guo Liang Fan

The central control modular of liquid level data acquisition and transmission system based on CAN bus was introduced. The modular was controlled by PC for transmitting and receiving data to CAN units through the USB port by the USB2.0-CAN High Speed adapter card designed by CP2102 and SJAl000, and the CAN bus controller SJA1000 and CP2102 was controlled by single chip computer (SCC) AT89C51. The hardware interface circuits was introduced, and the software flowchart and PC application program was also designed. The result shows that the system has the advantages of strong real-time, high speed, high reliability, easily extending communication devices, Plug and Play supporting, and automatic configuration. Its communications quality is better than the traditional ones, such as RS232, RS485 et al., and it can be used as real-time monitor in industrial multiple devices.


2013 ◽  
Vol 365-366 ◽  
pp. 658-661
Author(s):  
Ying Bo Cai ◽  
Huan Zha ◽  
Xue Tong Wei

Demand for high-speed fiber optic gyroscope data acquisition and real-time record, the design of the SD Card as storage medium to large capacity fiber optic gyro high - speed real - time acquisition and bulk storage systems, The system by applying the sd2.0 protocol and fat32 file systems in the system, enable real - time Data Acquisition of fiber optic gyro and large capacity storage. Experiments have shown that the system properly designed, easy to use, high reliability to meet the actual demand, is of important practical significance.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 180 ◽  
Author(s):  
Ha Quang Thinh Ngo ◽  
Thanh Phuong Nguyen ◽  
Hung Nguyen

The supervision and feeding of grazing livestock are always difficult missions. Since animals act based on habits, the real-time monitoring data logger has become an indispensable instrument to assist farmers in recognizing the status of livestock. Position-tracked and acoustic monitoring have become commonplace as two of the best methods to characterize feeding performance in ruminants. Previously, the existing methods were limited to desktop computers and lacked a sound-collecting function. These restrictions impacted the late interventions from feeders and required a large-sized data memory. In this work, an open-source framework for a data collector that autonomously captures the health information of farm animals is introduced. In this portable hardware, a Wireless Location Acoustic Sensing System (WiLASS) is integrated to infer the health status through the activities and abnormal phenomena of farming livestock via chew–bite sound identification. WiLASS involves the open modules of ESP32-WROOM, GPS NEO-6M, ADXL335 accelerometer, GY-MAX4466 amplifier, temperature sensors, and other signal processing circuits. By means of wireless communication, the ESP32-WROOM Thing micro-processor offers high speed transmission, standard protocol, and low power consumption. Data are transferred in a real-time manner from the attached sensing modules to a digital server for further analysis. The module of GPS NEO-6M Thing brings about fast tracking, high precision, and a strong signal, which is suitable for highland applications. Some computations are incorporated into the accelerometer to estimate directional movement and vibration. The GY-MAX4466 Thing plays the role of microphone, which is used to store environmental sound. To ensure the quality of auditory data, they are recorded at a minimum sampling frequency of 10 KHz and at a 12-bit resolution. Moreover, a mobile software in pocket devices is implemented to provide extended mobility and social convenience. Converging with a cloud-based server, the multi-Thing portable platform can provide access to simultaneously supervise. Message Queuing Telemetry Transport (MQTT) protocol with low bandwidth, high reliability, and bi-direction, and which is appropriate for most operating systemsOS, is embedded into the system to prevent data loss. From the experimental results, the feasibility, effectiveness, and correctness of our approach are verified. Under the changes of climate, the proposed framework not only supports the improvement of farming techniques, but also provides a high-quality alternative for poor rural areas because of its low cost and its ability to carry out a proper policy for each species.


Author(s):  
S. M. Babchuk ◽  
B. S. Nezamay

Power Line Communication (PLC) systems are actively evolving and becoming more and more widespread worldwide. They are used in the automation of technological processes, the organization of video surveillance systems and to control the "smart" home. The G3-PLC provides high-speed and high-reliability long-distance communication over the existing power grid. Due to the fact that G3-PLC provides the ability to transmit data including through transformers, infrastructure costs are reduced. In addition, the G3-PLC network can support IPv6, which will allow the G3-PLC to easily integrate into common IPv6-based communication lines in the future. G3-PLC-based bilateral communications networks can provide grid operators with intelligent monitoring and control capabilities. Operators will be able to monitor electricity consumption across the network in real time, apply variable tariff schedules and set limits on electricity consumption. In turn, consumers will be able to control electricity consumption in real time. By using variable tariffs, users can reduce their electricity consumption during peak use. The G3-PLC dedicated digital network can be used in process automation systems where traditional or traditional data transmission is difficult or impossible. As a result of the research, a polynomial mathematical model was found that best reflects the change in data rate depending on the length of the G3-PLC network segment. It is also found that for the simplified calculation, a linear model determined during the studies can be used. The established mathematical models of data transmission rate dependence on the segment length of the G3-PLC dedicated digital network will contribute to better design of G3-PLC-based networks.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


1995 ◽  
Author(s):  
Rod Clark ◽  
John Karpinsky ◽  
Gregg Borek ◽  
Eric Johnson
Keyword(s):  

Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Sign in / Sign up

Export Citation Format

Share Document