The association between high-yield and stable-yield characteristics of winter wheat and its influencing factors in the main producing areas in Northern China

2022 ◽  
Vol 37 (1) ◽  
pp. 263
Author(s):  
Xiao-lin CHEN ◽  
Xiao-yue TAN ◽  
Lu-ning LI ◽  
Jin CHEN ◽  
Qiang LI
2013 ◽  
Vol 153 (1) ◽  
pp. 90-101 ◽  
Author(s):  
X. B. Zhou ◽  
Y. H. Chen ◽  
Z. Ouyang

SUMMARYProductivity and water resource usage efficiency are crucial issues in sustainable agriculture. The aims of the present research were to compare and evaluate the soil moisture content (SMC), evapotranspiration (ETa), yield, water-use efficiency (WUE), and net return of winter wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merr.] under different plant population distribution patterns and to identify the possible ways to improve water utilization. Using the same plant population for a given crop, the experiments consisted of four spacings between rows (row spacings) for winter wheat (cvar Shannong 919) under both rainfed and irrigated conditions and five row spacings for summer soybean (cvar Ludou 4) under rainfed conditions. For winter wheat, the stem number with row spacing of 49 cm was the lowest in all treatments. The SMC was enhanced by irrigation, particularly at the 10–40 cm depth. The yield and WUE were negatively correlated with row spacing and were greater with narrower row spacing than with wider rows. For soybean, SMC in uniform distribution (spacing between plants) treatments was greater at lower depths than at shallower depths for each row spacing treatment. A high yield, WUE and net return of winter wheat and soybean can be achieved with narrower row spacing. Combining winter wheat row spacing of 14 cm with soybean row spacing of 18 cm and soybean row spacing of 27 cm is a highly suitable planting system for the plains of Northern China.


2016 ◽  
Vol 42 (8) ◽  
pp. 1143 ◽  
Author(s):  
Xin-Xin KONG ◽  
Yan ZHANG ◽  
De-Hui ZHAO ◽  
Xian-Chun XIA ◽  
Chun-Ping WANG ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


2004 ◽  
Vol 27 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Liangliang Jia ◽  
Xinping Chen ◽  
Fusuo Zhang ◽  
Andreas Buerkert ◽  
Volker Römheld

2021 ◽  
pp. 40-46
Author(s):  
Victor I. Kovtun ◽  
Lyudmila N. Kovtun ◽  
Kristina A. Mayorova

2018 ◽  
Vol 176 ◽  
pp. 10-17 ◽  
Author(s):  
Lifang Wang ◽  
Jutao Sun ◽  
Zhengbin Zhang ◽  
Ping Xu ◽  
Zhouping Shangguan

2021 ◽  
Vol 32 ◽  
pp. 02012
Author(s):  
Aleksey Suslov ◽  
Dimitry Sviridenk ◽  
Vasiliy Mamayev ◽  
Irina Sychiova

It has been shown that pre-sowing treatment increases field germination by 5.5%, and the preservation of plants after overwintering increases by 4.3%. Gumiton strengthened the work of the assimilation apparatus of the flag leaf due to an increase in leaf area by 29.3-49.1% and extended the life of plants. As a part of a tank mixture (Tabu Super, 1.5 l / t + Tertia, 2.5 l t), the drug allowed to reduce the prevalence of the root rot disease to 2.45-1.05% in comparison with the control. The organomineral complex provided the formation of a larger and more leveled grain with a mass of 1000 grains of 47.0-47.5 g, 43.9 g in the control; the grain nature is more than 780 g / dm 3, 751.7 g / dm 3, in the control. The use of Gumiton (seeds + tillering + piping) against the background of N 96 P 96 K 96 provided a high yield increase by 37.8%. To reduce the expenses of foliar fertilization with nitrogen fertilizers, the Gumiton organic-mineral complex should be recommended, since it is an element of greening in intensive technologies of winter wheat cultivation.


2013 ◽  
Vol 3 ◽  
pp. 106-113
Author(s):  
M.H. Ali ◽  
I. Abustan

Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop).


Sign in / Sign up

Export Citation Format

Share Document