scholarly journals SUBSTANTIATION OF COMPONENT COMPOSITION OF A COMPLEX PREPARATION AGAINST T-2 TOXIN IN in vitro EXPERIMENTS

Author(s):  
K.V. Perfilova ◽  
◽  
N.N. Mishina ◽  
E.I. Semenov ◽  
◽  
...  

As a stimulant (adaptogen), a unique, harmless and rich in biological composition among numerous apiproducts is considered a powder of bee dead. In this regard, the substantiation of the component composition of the developed complex prophylactic agent against T-2 toxin in in vitro experiments was carried out. That was the purpose of this work. The research work was carried out on the basis of the laboratory of mycotoxins of department of toxicology of FSBSI "Federal Center for Toxicological, Radiation and Biological Safety" (Kazan). The results of the study made it possible to determine the component composition of the complex prophylactic agent "Zeapitox" with antitoxic and immunostimulating effects. Its composition consists of zeolite – 95 % and bee dead – 5 %. The adsorption capacity of the "Zeapitox" against T-2 toxin was 66 %.

1991 ◽  
Vol 10 (2) ◽  
pp. 133-135 ◽  
Author(s):  
O.E. Orisakwe ◽  
A. Akintonwa

In-vitro experiments were performed to investigate the extent of adsorption of isoniazid to activated charcoal and locally produced activated carbon black (N220) and to explore the effect of varying pH on this adsorption. The results of the study indicated that activated charcoal and activated carbon black adsorbed isoniazid effectively. Adsorption was dependent upon the quantity of charcoal used. With charcoal quantity at 0.5 g, adsorption was virtually completed within 60 min. The mean or composite adsorption capacity of activated charcoal and activated carbon black (?g ml-1 of charcoal) were 325 and 278, respectively. The result of adsorption isotherms indicated no change in binding capacity of the drug from solutions of different pH.


Author(s):  
J. Metuzals

It has been demonstrated that the neurofibrillary tangles in biopsies of Alzheimer patients, composed of typical paired helical filaments (PHF), consist also of typical neurofilaments (NF) and 15nm wide filaments. Close structural relationships, and even continuity between NF and PHF, have been observed. In this paper, such relationships are investigated from the standpoint that the PHF are formed through posttranslational modifications of NF. To investigate the validity of the posttranslational modification hypothesis of PHF formation, we have identified in thin sections from frontal lobe biopsies of Alzheimer patients all existing conformations of NF and PHF and ordered these conformations in a hypothetical sequence. However, only experiments with animal model preparations will prove or disprove the validity of the interpretations of static structural observations made on patients. For this purpose, the results of in vitro experiments with the squid giant axon preparations are compared with those obtained from human patients. This approach is essential in discovering etiological factors of Alzheimer's disease and its early diagnosis.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


2020 ◽  
Vol 20 (4) ◽  
pp. 289-296
Author(s):  
Yuriy Khodarovich ◽  
Darya Rakhmaninova ◽  
German Kagarlitskiy ◽  
Anastasia Baryshnikova ◽  
Sergey Deyev

Background:: One of the approaches to cancer gene therapy relies on tumor transfection with DNA encoding toxins under the control of tumor-specific promoters. Methods:: Here, we used DNA plasmids encoding very potent anti-ERBB2 targeted toxin, driven by the human telomerase promoter or by the ubiquitous CAG promoter (pTERT-ETA and pCAG-ETA) and linear polyethylenimine to target cancer cells. Results:: We showed that the selectivity of cancer cell killing by the pTERT-ETA plasmid is highly dependent upon the method of preparation of DNA-polyethylenimine complexes. After adjustment of complex preparation protocol, cell lines with high activity of telomerase promoter can be selectively killed by transfection with the pTERT-ETA plasmid. We also showed that cells transfected with pTERT-ETA and pCAG-ETA plasmids do not exert any detectable bystander effect in vitro. Conclusion:: Despite this, three intratumoral injections of a plasmid-polyethylenimine complex resulted in substantial growth retardation of a poorly transfectable D2F2/E2 tumor in mice. There were no significant differences in anti-tumor properties between DNA constructs with telomerase or CAG promoters in vivo.


2020 ◽  
Vol 16 (8) ◽  
pp. 1147-1156
Author(s):  
Ruchi Singh ◽  
Syed M. Hasan ◽  
Amit Verma ◽  
Sanjay K. Panda

Background: A plant is a reservoir of potentially useful active chemical entities which act as drugs as well as intermediates for the discovery of newer molecules and provide newer leads for modern drug synthesis. The demand for new compounds in the field of medicine and biotechnology is centuries old and with a rise in chronic diseases and resistance to existing drugs in the field of anti-infective agents, the chemicals obtained from plant sources have been an area of attraction. The whole plant has possessed multiple pharmacological activities. This is scientifically established by in-vivo and in-vitro studies. Methods: Various electronic databases such as PubMed, Science Direct, Scopus and Google were searched to collect the data of the present review. All the collected information is categorized into different sections as per the aim of the paper. Results: Fifty-six research and review papers have been studied and were included in this review article. After a detailed study, we provide a significant description of various phytochemicals present in Nyctanthes arbor-tristis Linn., which is responsible for various pharmacological activities. Twenty of studied articles gives a general introduction and ethnobotanical information about the plant, two papers contained microscopic detail of leaf and fruit. Twenty papers contained information about the phytoconstituents present in different parts of Nyctanthes arbor-tristis plant and fourteen articles reported pharmacological activities like antioxidant, anti-inflammatory, antiarthritic, antimicrobial and immunobiotic activity. Conclusion: This review explores the published research work comprising the ethnobotanical description of the subjected plant, distribution, phytochemical profile, and arthritis-related pharmacological activities.


2020 ◽  
Vol 15 ◽  
Author(s):  
Manasi M. Chogale ◽  
Sujay S. Gaikwad ◽  
Savita P. Kulkarni ◽  
Vandana B. Patravale

Background: Tuberculosis (TB) continues to be among the leading causes for high mortality among developing countries. Though a seemingly effective treatment regimen against TB is in place, there has been no significant improvement in the therapeutic rates. This is primarily owing to the high drug doses, their associated sideeffects, and prolonged treatment regimen. Discontinuation of therapy due to the severe side effects of the drugs results in the progression of the infection to the more severe drug-resistant TB. Objectives: Reformulation of the current existing anti TB drugs into more efficient dosage forms could be an ideal way out. Nanoformulations have been known to mitigate the side effects of toxic, high-dose drugs. Hence, the current research work involves the formulation of Isoniazid (INH; a first-line anti TB molecule) loaded chitosan nanoparticles for pulmonary administration. Methods: INH loaded chitosan nanoparticles were prepared by ionic gelation method using an anionic crosslinker. Drugexcipient compatibility was evaluated using DSC and FT-IR. The formulation was optimized on the principles of Qualityby-Design using a full factorial design. Results: The obtained nanoparticles were spherical in shape having an average size of 620±10.97 nm and zeta potential +16.87±0.79 mV. Solid state characterization revealed partial encapsulation and amorphization of INH into the nanoparticulate system. In vitro release study confirmed an extended release of INH from the system. In vitro cell line based safety and efficacy studies revealed satisfactory results. Conclusion: The developed nanosystem is thus an efficient approach for antitubercular therapy.


Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
António Sérgio Silva ◽  
Aurora Carvalho ◽  
Pedro Barreiros ◽  
Juliana de Sá ◽  
Carlos Aroso ◽  
...  

Thermal and self-curing acrylic resins are frequently and versatilely used in dental medicine since they are biocompatible, have no flavor or odor, have satisfactory thermal qualities and polishing capacity, and are easy and fast. Thus, given their widespread use, their fracture resistance behavior is especially important. In this research work, we comparatively analyzed the fracture resistance capacity of thermo and self-curing acrylic resins in vitro. Materials and Methods: Five prosthesis bases were created for each of the following acrylic resins: Lucitone®, ProBase®, and Megacryl®, which were submitted to different forces through the use of the CS® Dental Testing Machine, usually mobilized in the context of fatigue tests. To this end, a point was defined in the center of the anterior edge of the aforementioned acrylic resin bases, for which the peak tended until a fracture occurred. Thermosetting resins were, on average, more resistant to fracture than self-curable resins, although the difference was not statistically significant. The thermosetting resins of the Lucitone® and Probase® brands demonstrated behavior that was more resistant to fracture than the self-curing homologues, although the difference was not statistically significant. Thermosetting resins tended to be, on average, more resistant to fracture and exhibited the maximum values for impact strength, compressive strength, tensile strength, hardness, and dimensional accuracy than self-curing resins, regardless of brand.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 238-255
Author(s):  
Esther M. Sánchez-Carnerero ◽  
Marina Russo ◽  
Andreas Jakob ◽  
Lucie Muchová ◽  
Libor Vítek ◽  
...  

Carbon monoxide (CO) is an endogenously produced signaling molecule involved in the control of a vast array of physiological processes. One of the strategies to administer therapeutic amounts of CO is the precise spatial and temporal control over its release from photoactivatable CO-releasing molecules (photoCORMs). Here we present the synthesis and photophysical and photochemical properties of a small library of meso-carboxy BODIPY derivatives bearing different substituents at positions 2 and 6. We show that the nature of substituents has a major impact on both their photophysics and the efficiency of CO photorelease. CO was found to be efficiently released from π-extended 2,6-arylethynyl BODIPY derivatives possessing absorption spectra shifted to a more biologically desirable wavelength range. Selected photoCORMs were subjected to in vitro experiments that did not reveal any serious toxic effects, suggesting their potential for further biological research.


Sign in / Sign up

Export Citation Format

Share Document