scholarly journals Effect of Lactation Stage on the Odd- and Branched-Chain Milk Fatty Acids of Dairy Cattle Under Grazing and Indoor Conditions

2008 ◽  
Vol 91 (7) ◽  
pp. 2662-2677 ◽  
Author(s):  
M. Craninx ◽  
A. Steen ◽  
H. Van Laar ◽  
T. Van Nespen ◽  
J. Martín-Tereso ◽  
...  
2016 ◽  
Vol 154 (3) ◽  
pp. 515-531 ◽  
Author(s):  
J. M. CASTRO-MONTOYA ◽  
S. DE CAMPENEERE ◽  
B. DE BAETS ◽  
V. FIEVEZ

SUMMARYRelationships between milk fatty acids (MFA) and methane (CH4) emissions from dairy cattle were explored. Data from a total of 12 studies including 39 treatments were gathered in the database. Methane was expressed as daily emissions (g/d), relative to dry matter intake (g/kg), milk production (g/kg milk) and body weight (g/kg). The univariate correlations between MFA and CH4 were based on absolute means and on relative changes of each treatment compared with its corresponding control. Saturated fatty acids, odd- and branched-chain FA and long-chain poly-unsaturated FA were positively related to CH4, while cis- and trans-isomers of mono-unsaturated FA were negatively related to CH4. However, most of the coefficients of determination (R2) of these univariate regressions ranged from 0·2 to 0·7, indicating that individual MFA only explain a limited part of the variation in CH4. Significant relationships between MFA and CH4 varied depending on the unit in which emissions were expressed. Similarly, some MFA seemed more suited to predict relative changes in CH4 emissions rather than absolute amounts. The present findings contribute to the exploration of the potential of MFA as biomarkers for CH4 emissions from dairy cattle, although differences between studies in the detail of MFA analysis and hence the number of MFA reported in the current study, complicates this kind of literature survey.


1995 ◽  
Vol 75 (2) ◽  
pp. 267-269 ◽  
Author(s):  
E. J. DePeters ◽  
J. F. Medrano ◽  
B. A. Reed

The proportion of MCFA in milk fat was lowest for Holstein, highest for Jersey, and intermediate for Brown Swiss cows. Proportions of SCFA (C4:0 to C8:0) and LCFA (> 18 C) did not differ among breeds. Differences in fatty acid composition among breeds were small, but could contribute to differences in manufacturing properties of milk fat. Key words: Holstein, Jersey, Brown Swiss, milk fatty acids


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijun Shi ◽  
Xin Wu ◽  
Yuze Yang ◽  
Zhu Ma ◽  
Xiaoqing Lv ◽  
...  

Abstract Background People are paying more attention to the healthy and balanced diet with the improvement of their living standards. Milk fatty acids (FAs) have been reported that they were related to some atherosclerosis and coronary heart diseases in human. In our previous genome-wide association study (GWAS) on milk FAs in dairy cattle, 83 genome-wide significant single nucleotide polymorphisms (SNPs) were detected. Among them, two SNPs, ARS-BFGL-NGS-109493 and BTA-56389-no-rs associated with C18index (P = 0.0459), were located in the upstream of 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) gene. AGPAT3 is involved in glycerol-lipid, glycerol-phospholipid metabolism and phospholipase D signaling pathways. Hence, it was inferred as a candidate gene for milk FAs. The aim of this study was to further confirm the genetic effects of the AGPAT3 gene on milk FA traits in dairy cattle. Results Through re-sequencing the complete coding region, and 3000 bp of 5′ and 3′ regulatory regions of the AGPAT3 gene, a total of 17 SNPs were identified, including four in 5′ regulatory region, one in 5′ untranslated region (UTR), three in introns, one in 3′ UTR, and eight in 3′ regulatory region. By the linkage disequilibrium (LD) analysis with Haploview4.1 software, two haplotype blocks were observed that were formed by four and 12 identified SNPs, respectively. Using SAS9.2, we performed single locus-based and haplotype-based association analysis on 24 milk FAs in 1065 Chinese Holstein cows, and discovered that all the SNPs and the haplotype blocks were significantly associated with C6:0, C8:0 and C10:0 (P < 0.0001–0.0384). Further, with Genomatix, we predicted that four SNPs in 5′ regulatory region (g.146702957G > A, g.146704373A > G, g.146704618A > G and g.146704699G > A) changed the transcription factor binding sites (TFBSs) for transcription factors SMARCA3, REX1, VMYB, BRACH, NKX26, ZBED4, SP1, USF1, ARNT and FOXA1. Out of them, two SNPs were validated to impact transcriptional activity by performing luciferase assay that the alleles A of both SNPs, g.146704373A > G and g.146704618A > G, increased the transcriptional activities of AGPAT3 promoter compared with alleles G (P = 0.0004). Conclusions In conclusion, our findings first demonstrated the significant genetic associations of the AGPAT3 gene with milk FAs in dairy cattle, and two potential causal mutations were detected.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3210
Author(s):  
Sidi Ka Amar Abdoul-Aziz ◽  
Yangdong Zhang ◽  
Jiaqi Wang

This review highlights the importance of odd and branched chain fatty acids (OBCFAs) and dietary factors that may affect the content of milk OBCFAs in dairy cows. Historically, OBCFAs in cow milk had little significance due to their low concentrations compared to other milk fatty acids (FAs). The primary source of OBCFAs is ruminal bacteria. In general, FAs and OBCFAs profile in milk is mainly affected by dietary FAs and FAs metabolism in the rumen. Additionally, lipid mobilization in the body and FAs metabolism in mammary glands affect the milk OBCFAs profile. In cows, supplementation with fat rich in linoleic acid and α-linolenic acid decrease milk OBCFAs content, whereas supplementation with marine algae or fish oil increase milk OBCFAs content. Feeding more forage rather than concentrate increases the yield of some OBCFAs in milk. A high grass silage rate in the diet may increase milk total OBCFAs. In contrast to saturated FAs, OBCFAs have beneficial effects on cardiovascular diseases and type II diabetes. Furthermore, OBCFAs may have anti-cancer properties and prevent Alzheimer’s disease and metabolic syndrome.


2020 ◽  
Author(s):  
Lijun Shi ◽  
Xin Wu ◽  
Zhu Ma ◽  
Xiaoqing Lv ◽  
Lin Liu ◽  
...  

Abstract Background: People are paying more attention to the healthy and balanced diet with the improvement of their living standards. Milk fatty acids (FAs) have been reported that they were related to some atherosclerosis and coronary heart diseases in human. In our previous genome-wide association study (GWAS) on milk FAs in dairy cattle, 83 genome-wide significant single nucleotide polymorphisms (SNPs) were detected. Among them, two SNPs, ARS-BFGL-NGS-109493 and BTA-56389-no-rs associated with C18index (P = 0.0459), were located in the upstream of 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) gene. AGPAT3 is involved in glycerol-lipid, glycerol-phospholipid metabolism and phospholipase D signaling pathways. Hence, it was inferred as a candidate gene for milk FAs. The aim of this study was to further confirm the genetic effects of the AGPAT3 gene on milk FA traits in dairy cattle.Results: Through re-sequencing the complete coding region, and 3,000bp of 5' and 3' regulatory regions of the AGPAT3 gene, a total of 17 SNPs were identified, including four in 5' regulatory region, one in 5' untranslated region (UTR), three in introns, one in 3' UTR, and eight in 3' regulatory region. By the linkage disequilibrium (LD) analysis with Haploview4.1 software, two haplotype blocks were observed that were formed by four and 12 identified SNPs, respectively. Using SAS9.2, we performed single locus-based and haplotype-based association analysis on 24 milk FAs in 1,065 Chinese Holstein cows, and discovered that all the SNPs and the haplotype blocks were significantly associated with C6:0, C8:0 and C10:0 (P < 0.0001~ 0.0384). Further, with Genomatix, we predicted that four SNPs in 5' regulatory region (g.146702957G>A, g.146704373A>G g.146704618A>G and g.146704699G>A) changed the transcription factor binding sites (TFBSs) for transcription factors SMARCA3, REX1, VMYB, BRACH, NKX26, ZBED4, SP1, USF1, ARNT and FOXA1. Out of them, two SNPs were validated to impact transcriptional activity by performing luciferase assay that the alleles A of both SNPs, g.146704373A>G and g.146704618A>G, increased the transcriptional activities of AGPAT3 promoter compared with alleles G (P = 0.0004).Conclusions: In conclusion, our findings first demonstrated the significant genetic associations of the AGPAT3 gene with milk FAs in dairy cattle, and two potential causal mutations were detected.


2020 ◽  
Author(s):  
Mingyue Cao ◽  
Lijun Shi ◽  
Peng Peng ◽  
Bo Han ◽  
Lin Liu ◽  
...  

Abstract Background: Our previous genome-wide association study (GWAS) on milk fatty acid traits in Chinese Holstein cows revealed, the SNP, BTB-01556197, was significantly associated with C10:0 at genome-wide level (P = 0.0239). It was located in the down-stream of 5-hydroxytryptamine receptor 1B (HTR1B) gene that has been shown to play an important role in the regulation of fatty acid oxidation. Hence, we considered it as a promising candidate gene for milk fatty acids in dairy cattle. In this study, we aimed to investigate whether the HTR1B gene had significant genetic effects on milk fatty acid traits.Results: We re-sequenced the entire coding region and 3,000 bp of 5' and 3' flanking regions of HTR1B gene. A total of 13 SNPs was identified, containing one in 5' flanking region, two in 5' untranslated region (UTR), two in exon 1, five in 3' UTR, and three in 3' flanking region. By performing genotype-phenotype association analysis with SAS9.2 software, we observed that 13 SNPs were significantly associated with medium-chain saturated fatty acids such as C6:0, C8:0 and C10:0 (P < 0.0001 ~ 0.042). With Haploview 4.1 software, linkage disequilibrium (LD) analysis was performed that two haplotype blocks formed by two and ten SNPs were observed. Haplotype-based association analysis indicated that both haplotype blocks were strongly associated with C6:0, C8:0 and C10:0 as well (P < 0.0001 ~ 0.0071). With regards to the missense mutation in exon 1 (g.17303383G>T) that reduced amino acid change from alanine to serine, we predicted that it altered the secondary structure of HTR1B protein with SOPMA. In addition, we predicted that three SNPs in promoter region, g.17307103A>T, g.17305206T>G and g.17303761C>T, altered the binding sites of transcription factors (TFs) HMX2, PAX2, FOXP1ES, MIZ1, CUX2, DREAM, and PPAR-RXR by Genomatix. Of them, luciferase assay experiment further confirmed that the allele T of g.17307103A>T significantly increased the transcriptional activity of HTR1B gene than allele A (P = 0.0007).Conclusions: In conclusion, our findings provided first evidence that the HTR1B gene had significant genetic effects on milk fatty acids in dairy cattle.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2081
Author(s):  
Quynh Chau Dang Van ◽  
Emilie Knapp ◽  
Jean-Luc Hornick ◽  
Isabelle Dufrasne

The objective of this paper is to study the influence of physiological factors that affect the energy balance, such as lactation stage and parity, on milk yield and composition, milk and blood fatty acid concentrations, blood metabolites and hormones in healthy early lactation cows. Thirty-two Holstein dairy cows from five Belgian commercial farms were followed. The grass silage-based diets fed to cows fell within normal composition ranges typically offered to dairy cows on commercial dairy farms in the region. Milk and blood were sampled at each official milk recording and used for the determination of milk fat and protein, milk and blood fatty acids, blood metabolites and hormones concentrations. The considered period was 7 to 150 days in milk. As lactation progressed, concentrations of milk 18:0 and 18:1c9, as well as blood non-esterified fatty acids and β-hydroxybutyrate, decreased, and those of milk C4–C14, blood cholesterol, triglycerides, insulin and IGF-I increased, agreeing with the extensive mobilization of body reserves in early lactation. Lower concentrations of milk C4–C14 and 16:0 and concomitant higher concentrations of milk 18:0 and 18:1c9 suggest a larger body reserve mobilization in first parity cows compared with greater than or equal to second parity cows. This study confirms that early lactation stage along with parity significantly influence milk fatty acids, such as 18:1, and blood metabolites and hormones, such as NEFA and insulin.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150386 ◽  
Author(s):  
Melissa L. Bainbridge ◽  
Laura M. Cersosimo ◽  
André-Denis G. Wright ◽  
Jana Kraft

BMC Genetics ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 43 ◽  
Author(s):  
Aniek C Bouwman ◽  
Henk Bovenhuis ◽  
Marleen HPW Visker ◽  
Johan AM van Arendonk

Sign in / Sign up

Export Citation Format

Share Document