scholarly journals Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd Improvement milk samples and association with milk yield and components

2016 ◽  
Vol 99 (11) ◽  
pp. 9263-9270 ◽  
Author(s):  
D.E. Santschi ◽  
R. Lacroix ◽  
J. Durocher ◽  
M. Duplessis ◽  
R.K. Moore ◽  
...  
2019 ◽  
Vol 86 (2) ◽  
pp. 208-210 ◽  
Author(s):  
Mélissa Duplessis ◽  
Débora E. Santschi ◽  
Sabrina Plante ◽  
Camille Bergeron ◽  
Daniel M. Lefebvre ◽  
...  

AbstractAnalysis of milk BHB concentration by Fourier-transform infrared (FTIR) spectrometry more frequently than regular milk testing could help dairy producers in decision making, particularly if it would be possible to use small hand-stripped samples (hereinafter simply called samples) taken between dairy herd improvement (DHI) test-samples analysed using DHI algorithms. The aim of this Research Communication was to evaluate milk BHB concentration and the prevalence of elevated milk BHB concentration analysed by FTIR spectrometry compared with flow-injection analysis (SKALAR) from samples taken at different times relative to the milking. A total of 293 early-lactation cows in 44 commercial dairy herds were involved in the study. Herds were visited once during the morning milking when a routine DHI test-sample was obtained using in-line milk samplers. Additional milk samples were taken by hand stripping as follows: (1) Just before connecting the milking machine; (2) immediately after removing the milking machine; (3) 3 h after milking and (4) 6 h after milking. Milk samples were analysed for BHB concentration by FTIR and SKALAR, the latter being the reference method. Milk BHB concentration from samples taken before milking was different between FTIR and SKALAR whereas no difference was noted for other sampling times, although milk BHB concentration rose as time after milking increased. Except for DHI test-samples for which prevalence was not different between analysis methods, prevalence of elevated milk BHB concentration (≥0.15 mmol/l) was greater for FTIR analysis. However, no difference in prevalence was observed between SKALAR and FTIR when using a threshold of ≥0.20 mmol/l. In summary, hand-stripped milk samples taken any time after removing the milking machine until 6 h after the milking can be recommended for FTIR analysis of elevated milk BHB concentration prevalence provided a threshold of 0.20 mmol/l is used.


2019 ◽  
Vol 102 (2) ◽  
pp. 1354-1363 ◽  
Author(s):  
G. Rovere ◽  
G. de los Campos ◽  
R.J. Tempelman ◽  
A.I. Vazquez ◽  
F. Miglior ◽  
...  

2018 ◽  
Vol 36 (3-4) ◽  
pp. 1066-1099 ◽  
Author(s):  
Radia Labied ◽  
Oumessaad Benturki ◽  
Adh’ Ya Eddine Hamitouche ◽  
André Donnot

In aqueous solutions, hexavalent chromium Cr(VI) was successfully removed by activated carbon “ Z. jujuba rubidium carbonate-activated carbon” obtained from waste lignocellulosic material ( Ziziphus jujuba cores). Rubidium carbonate was used to prepare Z. jujuba rubidium carbonate-activated carbon by chemical activation using a 1:1 w/w ratio. Our results indicate that the obtained surface area of the activated carbon was equal to 608.31 m2/g. The adsorption study of Cr(VI) was investigated under batch conditions at constant stirring speed (220 r/min). Factors such as pH (1–6), temperature (20–40°C), adsorbent concentration (0.5–3 g/l), and initial Cr(VI) concentration (50–500 mg/l) were all studied to attain the maximum removal efficiency. Prior to the adsorption process, the morphology, elementary composition, and loss mass of activated carbon were characterized using scanning electron microscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Fourier transform infrared analysis of the adsorbent demonstrated the presence of key functional groups associated with the adsorption phenomenon such as those of hydroxyl and aromatic groups. The obtained results showed that the optimal conditions for a maximum adsorption efficiency are 2 for pH, 1 g/l for activated carbon dosage and 100 mg/l for Cr(VI) concentration. The removal percentage increased from 27.2 to 62.08%. The kinetic sorption was described by a pseudo-second-order kinetic equation ( R2 ≈ 0.995). The Tóth ( R2 = 0.997) and Elovich models were best to explain the sorption phenomenon. Thermodynamic studies showed that the adsorption of Cr(VI) onto activated carbon was feasible, spontaneous, and endothermic at 20–40°C. This novel Z. jujuba rubidium carbonate-activated carbon derived from Z. jujuba core has been found to be effective for the removal of Cr(VI) and not harmful to the ecosystem.


Sign in / Sign up

Export Citation Format

Share Document