scholarly journals Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study

2019 ◽  
Vol 102 (8) ◽  
pp. 7288-7305 ◽  
Author(s):  
G.U. Maier ◽  
W.J. Love ◽  
B.M. Karle ◽  
S.A. Dubrovsky ◽  
D.R. Williams ◽  
...  
2017 ◽  
Vol 95 (4) ◽  
pp. 1521-1527
Author(s):  
T. D. Avra ◽  
K. M. Abell ◽  
D. D. Shane ◽  
M. E. Theurer ◽  
R. L. Larson ◽  
...  

2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Gerard M. Murray ◽  
Simon J. More ◽  
Tracy A. Clegg ◽  
Bernadette Earley ◽  
Rónan G. O’Neill ◽  
...  

Author(s):  
C Blakebrough-Hall ◽  
P Hick ◽  
T J Mahony ◽  
L A González

Abstract Bovine Respiratory Disease (BRD) is the primary cause of morbidity and mortality in cattle feedlots. There is a need to understand what animal health and production factors are associated with increased mortality risk due to BRD. The aim of the present study was to explore factors associated with BRD case fatality in feedlot cattle. Four pens totalling 898 steers were monitored daily for visual signs of BRD such as difficult breathing and coughing, and animals exhibiting signs of BRD were taken to the hospital shed for further examination and clinical measures. Blood samples were obtained at feedlot entry and at time of first BRD pull from animals diagnosed with BRD (n=121) and those that died due to BRD confirmed by post-mortem examination (n=16; 13.2% case fatality rate). Mixed-effects linear regression models were used to estimate differences in animal health and production factors and the relative concentrations of 34 identified blood metabolites between animals that survived versus those that died. Generalised linear mixed-effects models were used to obtain the odds of being seronegative (at both feedlot entry and first BRD pull) to five BRD viruses and having a positive nasal swab result at the time of first pull in died and survived animals. Animals that died from BRD had lower average daily gain (ADG), reduced weight at first BRD pull, higher visual BRD scores and received more treatments for BRD compared to animals that survived BRD (P < 0.05). The odds of being seronegative for bovine viral diarrhea virus 1 (BVDV-1) was 5.66 times higher for animals that died compared to those that survived (P = 0.013). The odds of having a positive bovine coronavirus nasal swab result were 13.73 times higher in animals that died versus those that survived (P = 0.007). Animals that died from BRD had higher blood concentrations of α glucose chain, β-hydroxybutyrate, leucine, phenylalanine and pyruvate compared to those that survived (P < 0.05). Animals that died from BRD had lower concentrations of acetate, citrate and glycine compared to animals that survived (P < 0.05). The results of the current study suggest that ADG to first BRD pull, weight at first BRD pull, visual BRD score, the number of BRD treatments, seronegativity to BVDV-1, virus positive to BCoV nasal swab, and that certain blood metabolites are associated with BRD case fatality risk. The ability of these measures to predict the risk of death due to BRD needs further research.


2020 ◽  
pp. 1-7
Author(s):  
Sharif S. Aly ◽  
Betsy M. Karle ◽  
Deniece R. Williams ◽  
Gabriele U. Maier ◽  
Sasha Dubrovsky

Abstract Bovine respiratory disease (BRD) is the leading natural cause of death in US beef and dairy cattle, causing the annual loss of more than 1 million animals and financial losses in excess of $700 million. The multiple etiologies of BRD and its complex web of risk factors necessitate a herd-specific intervention plan for its prevention and control on dairies. Hence, a risk assessment is an important tool that producers and veterinarians can utilize for a comprehensive assessment of the management and host factors that predispose calves to BRD. The current study identifies the steps taken to develop the first BRD risk assessment tool and its components, namely the BRD risk factor questionnaire, the BRD scoring system, and a herd-specific BRD control and prevention plan. The risk factor questionnaire was designed to inquire on aspects of calf-rearing including management practices that affect calf health generally, and BRD specifically. The risk scores associated with each risk factor investigated in the questionnaire were estimated based on data from two observational studies. Producers can also estimate the prevalence of BRD in their calf herds using a smart phone or tablet application that facilitates selection of a true random sample of calves for scoring using the California BRD scoring system. Based on the risk factors identified, producers and herd veterinarians can then decide the management changes needed to mitigate the calf herd's risk for BRD. A follow-up risk assessment after a duration of time sufficient for exposure of a new cohort of calves to the management changes introduced in response to the risk assessment is recommended to monitor the prevalence of BRD.


2020 ◽  
pp. 1-4
Author(s):  
John Dustin Loy

Abstract Advances in molecular and proteomic technologies and methods have enabled new diagnostic tools for bovine respiratory pathogens that are high-throughput, rapid, and extremely sensitive. Classically, diagnostic testing for these pathogens required culture-based approaches that required days to weeks and highly trained technical staff to conduct. However, new advances such as multiplex hydrolysis probe-based real-time PCR technology have enabled enhanced and rapid detection of bovine respiratory disease (BRD) pathogens in a variety of clinical specimens. These tools provide many advantages and have shown superiority over culture for co-infections/co-detections where multiple pathogens are present. Additionally, the integration of matrix-assisted laser desorption ionization time of flight mass spectrometry (MS) into veterinary diagnostic labs has revolutionized the ability to rapidly identify bacterial pathogens associated with BRD. Recent applications of this technology include the ability to type these opportunistic pathogens to the sub-species level (specifically Mannheimia haemolytica) using MS-based biomarkers, to allow for the identification of bacterial genotypes associated with BRD versus genotypes that are more likely to be commensal in nature.


Sign in / Sign up

Export Citation Format

Share Document