scholarly journals Distinct blood and milk 18-carbon fatty acid proportions and buccal bacterial populations in dairy cows differing in reticulorumen pH response to dietary supplementation of rapidly fermentable carbohydrates

2019 ◽  
Vol 102 (5) ◽  
pp. 4025-4040 ◽  
Author(s):  
L. Dewanckele ◽  
L. Jing ◽  
B. Stefańska ◽  
B. Vlaeminck ◽  
J. Jeyanathan ◽  
...  
2018 ◽  
Vol 101 (12) ◽  
pp. 10939-10952 ◽  
Author(s):  
F. Zanferari ◽  
T.H.A. Vendramini ◽  
M.F. Rentas ◽  
R. Gardinal ◽  
G.D. Calomeni ◽  
...  

2008 ◽  
Vol 74 (22) ◽  
pp. 6923-6930 ◽  
Author(s):  
Charlotte Boeckaert ◽  
Bruno Vlaeminck ◽  
Veerle Fievez ◽  
Lois Maignien ◽  
Jan Dijkstra ◽  
...  

ABSTRACT Optimization of the fatty acid composition of ruminant milk and meat is desirable. Dietary supplementation of algae was previously shown to inhibit rumen biohydrogenation, resulting in an altered milk fatty acid profile. Bacteria involved in biohydrogenation belong to the Butyrivibrio group. This study was aimed at relating accumulation of biohydrogenation intermediates with shifts in Butyrivibrio spp. in the rumen of dairy cows. Therefore, an experiment was performed with three rumen-fistulated dairy cows receiving a concentrate containing algae (9.35 g/kg total dry matter [DM] intake) for 20 days. Supplementation of the diet with algae inhibited biohydrogenation of C18:2 omega 6 (n-6) and C18:3 n-3, resulting in increased concentrations of biohydrogenation intermediates, whereas C18:0 decreased. Addition of algae increased ruminal C18:1 trans fatty acid concentrations, mainly due to 6- and 20-fold increases in C18:1 trans 11 (t11) and C18:1 t10. The number of ciliates (5.37 log copies/g rumen digesta) and the composition of the ciliate community were unaffected by dietary algae. In contrast, supplementation of the diet with algae changed the composition of the bacterial community. Primers for the Butyrivibrio group, including the genera Butyrivibrio and Pseudobutyrivibrio, were specifically designed. Denaturing gradient gel electrophoresis showed community changes upon addition of algae without affecting the total amount of Butyrivibrio bacteria (7.06 log copies/g rumen DM). Clone libraries showed that algae affected noncultivated species, which cluster taxonomically between the genera Butyrivibrio and Pseudobutyrivibrio and might play a role in biohydrogenation. In addition, 20% of the clones from a randomly selected rumen sample were related to the C18:0-producing branch, although the associated C18:0 concentration decreased through supplementation of the diet with algae.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1589
Author(s):  
Maria Antonietta Colonna ◽  
Francesco Giannico ◽  
Vincenzo Tufarelli ◽  
Vito Laudadio ◽  
Maria Selvaggi ◽  
...  

The research studied the effects of dietary supplementation with Camelina sativa fresh forage on the chemical and fatty acid composition of milk and Caciotta cheese, and its sensory properties. Twenty Ionica goats were randomly assigned to the following two groups (n = 10): the control received a traditional forage mixture (Avena sativa, 70%; Vicia sativa, 20%; Trifolium spp., 10%), while the experimental group was given Camelina sativa fresh forage (CAM). All of the dams grazed on pasture and received a commercial feed (500 g/head/day) at housing. The milk from the CAM group showed a higher (p < 0.05) content of dry matter, fat, lactose and concentrations of C6:0, C11:0, C14:0, C18:2 n-6, CLA and PUFA, while lower (p < 0.05) amounts of C12:0, C18:0 and saturated long chain FA (SLCFA). The Caciotta cheese from the CAM group showed a greater (p < 0.05) content of n-6 FA and n-6/n-3 ratio, although close to four, thus resulting adequate under the nutritional point of view. The overall liking, odour, taste, hardness, solubility and “goaty” flavour were better (p < 0.05) in the CAM cheeses. Further investigation would be advisable in order to evaluate the effect of feeding Camelina forage obtained from different phenological stages, and the application of ensiling techniques.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Dongwook Kim ◽  
Kwan-Woo Kim ◽  
Sang-Hoon Lee ◽  
Aera Jang

AbstractWe used 16S ribosomal RNA sequencing to evaluate changes in the gut microbiota of mice fed a diet supplemented with either raw or cooked beef loin powder for 9 weeks. Male BALB/c mice (n = 60) were randomly allocated to five groups: mice fed AIN-93G chow (CON), chow containing 5% (5RB) and 10% (10RB) raw beef loin powder, and chow containing 5% (5CB) and 10% (10CB) cooked beef loin powder. Dietary supplementation with both RB and CB increased the relative abundance of Clostridiales compared to the CON diet (p < 0.05). Mice fed 10RB showed a significantly higher relative abundance of Firmicutes (p = 0.018) and Lactobacillus (p = 0.001) than CON mice, and the ratio of Firmicutes/Bacteroidetes showed an increasing trend in the 10RB mice (p > 0.05). Mice fed 10CB showed a higher abundance of Peptostreptococcaceae and a lower abundance of Desulfovibrionaceae compared with the CON mice (p < 0.05). Genes for glycan biosynthesis, which result in short-chain fatty acid synthesis, were enriched in the CB mice compared to the RB mice, which was correlated to a high abundance of Bacteroides. Overall, dietary RB and CB changed the gut microbiota of mice (p < 0.05).


2015 ◽  
Vol 98 (6) ◽  
pp. 4000-4011 ◽  
Author(s):  
K.M. Livingstone ◽  
D.J. Humphries ◽  
P. Kirton ◽  
K.E. Kliem ◽  
D.I. Givens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document