Effects of lactic acid bacteria in a silage inoculant on ruminal nutrient digestibility, N metabolism, and lactation performance of high-producing dairy cows

Author(s):  
H.F. Monteiro ◽  
E.M. Paula ◽  
R.E. Muck ◽  
G.A. Broderick ◽  
A.P. Faciola
Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1482
Author(s):  
Nguyen Thi Huyen ◽  
Ines Martinez ◽  
Wilbert Pellikaan

The current study has two objectives: (1) To determine the effect of different lactic acid bacteria (LAB) strains’ inoculant on silage quality of fresh ryegrass (FR) and rain-treated ryegrass (RTR), and (2) to find the optimal way (silage inoculant vs. direct-fed microbial (DFM)) to use LAB strains in order to improve nutrient digestibility and reduce methane emission (CH4) in ruminant production. Five LAB strains were tested, Lactiplantibacillus plantarum AGR-1, L. plantarum AGR-2, Lactococcus lactis subsp. lactis biovar diacetylactis AGR-3, L. lactis subsp. lactis AGR-4 and L. lactis subsp. lactis AGR-5. Each LAB strain was inoculated at 106 cfu/g fresh weight into the FR and the RTR and ensiled for 60 days. After ensiling, the effect of LAB strains included as a DFM or silage inoculant on rumen digestibility and CH4 production were measured using an in vitro gas production system with three separate runs. The in vitro experiment consisted of 24 treatments (2 grasses (FR and RTR) × 2 ways (inoculant or DFM) × 6 strains (5 LAB strains + 1 Control)). The results indicated that the LAB strains’ inoculant treatments reduced (p < 0.0001) the dry matter (DM) losses, the NH3 concentration (p < 0.0001) and the pH (p = 0.0019) upon ensiling in both the FR and the RTR. The lowest values in dry matter (DM) loss and NH3 concentration were found in the L. plantarum (AGR-2) and L. lactis (AGR-5). The in vitro CH4 production was lower for silages inoculated with L. plantarum (AGR-1, p = 0.0054), L. lactis (AGR-4, p = 0.026), L. lactis (AGR-5, p = 0.029) and L. plantarum (AGR-2, p = 0.090), compared to the control. Methane production was lower (p = 0.0027) for LABs when used as silage inoculants, compared to being used as DFM. Lactic acid bacteria used as silage inoculants increased (p ≤ 0.0001) the in vitro DM and organic matter (OM) degradability both in the FR and the RTR, whereas LAB strains used as DFM showed no such effect. The DM and OM digestibility were highest in the L. plantarum (AGR-1, p = 0.0175). Among the five LAB strains used in the current study, L. plantarum (AGR-2) was the best candidate to improve silage quality. Our observations suggest that these LAB strains are most promising when used as silage inoculants and to be confirmed in vivo.


2018 ◽  
Vol 18 (3) ◽  
pp. 769-779
Author(s):  
Xin Jian Lei ◽  
Hyeok Min Yun ◽  
Yi Yang ◽  
In Ho Kim

Abstract This study was conducted to evaluate the effects of dietary β-glucan supplementation on growth performance, nutrient digestibility, blood profiles, and fecal characteristics in weaner pigs. A total of 140 weaner pigs [(Yorkshire × Landrace) × Duroc] with an average body weight of 6.37±1.14 kg were allotted to one of the following dietary treatments: 1) negative control (NC, basal diet); 2) positive control (PC, basal diet supplemented with 39 ppm Tiamulin); 3) basal diet supplemented with 0.1% β-glucan (G1); 4) basal diet supplemented with 0.2% β-glucan (G2). During days 22 to 42 and 1 to 42, pigs offered PC and G2 diets grew faster than those offered NC diet (P<0.05). Additionally, during the same periods, pigs fed G2 and PC diets exhibited improved gain:feed ratio compared to pigs receiving NC and G1 diets (P<0.05). Pigs fed G2 diet exhibited higher coefficient of total tract apparent digestibility of dry matter than those fed NC diet (P<0.05). There were no differences on blood profiles, fecal scores, fecal moisture, and fecal pH (P>0.05). Fecal lactic acid bacteria counts in G2 treatment were higher compared with PC and NC treatments (P<0.05). Coliform bacteria concentrations were decreased in pigs fed PC and G2 diets compared with those fed NC diet (P<0.05). In conclusion, the results of the current study indicate that dietary supplementation of 0.2% β-glucan can improve growth performance and dry matter digestibility, increase fecal lactic acid bacteria concentration but decrease fecal coliform bacteria concentration in weaner pigs.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 549
Author(s):  
Xiaoli Zhang ◽  
Chunyu Jiang ◽  
Qinghua Gao ◽  
Duanqin Wu ◽  
Shaoxun Tang ◽  
...  

This study evaluated the effects of alkyl polyglycoside (APG), which is a non-ionic surfactant, on lactation performance, nutrient digestibility and blood metabolites in dairy cows. Twenty dairy cows were randomly divided into four groups and fed a basal diet that included pelleted concentrate, distillers grains, and fresh limpograss. The four treatments included 0, 5.5, 11 and 22 mL APG per kg of pelleted concentrate on a dry matter basis; treatments were defined as APG0, APG5.5, APG11, and APG22, respectively. Dry matter intake was not affected by APG supplementation. There was an increase in milk yield (from 13.96 to 16.71 kg/day) and increases in milk fat (quadratic, p = 0.04), protein (quadratic, p = 0.10), and lactose concentrations (linear, p = 0.07) with increasing APG supplementation. In addition, APG supplementation increased (p ≤ 0.03) the milk fat, protein, solid non-fat, and total solid yields, while the lactose yield increased (linear, p = 0.01) as the APG level increased. Dietary APG supplementation had no effect on nutrient digestibility and blood metabolites. It was concluded that the addition of APG at doses up to 22 mL/kg of pelleted concentrate had positive effects on the milk composition in dairy cows.


Author(s):  
J A Rooke ◽  
F Kafilzadeh

The selection of lactic acid bacteria for use as silage additives is normally based upon their ability to dominate the silage fermentation and not upon benefits in animal performance. The object of this study was to investigate whether two lactic acid bacteria selected for fermentation characteristics would support the same animal performance as an established silage inoculant.On 5 June 1989, first cut, predominantly perennial ryegrass (Lolium perenne) was ensiled direct with no wilting in plastolene silos of 2 tonne capacity. The herbage was harvested with a precision chop forage harvester and the following additive treatments were applied: None, control (C); Formic acid (Add-F, BP Nutrition, 850g/kg; 3 litres/tonne), (F); inoculant E. (Ecosyl, ICI Pic, 106Lactobacillus plantarum /g): inoculant A, (Pediococcus sp, 10 /g); inoculant B (L. plantarum 106 /g). The silages were fed to 6 wether sheep (Suffolk x Halfbred), initial live-weight, 40.1 kg (s.d. 2.22kg). Because the silages were unstable aerobically and restricted quantities of each silage were available, all sheep were fed the silages in the same (random) order.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Gao ◽  
Yu-Chen Liu ◽  
Yu Wang ◽  
Han Li ◽  
Xiang-Ming Wang ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 214-228 ◽  
Author(s):  
Hugo F Monteiro ◽  
Ana Laura J Lelis ◽  
Virginia L N Brandao ◽  
Andressa Faccenda ◽  
Andre S Avila ◽  
...  

Abstract The objectives of this study were: 1) to compare the effects of live yeast (LY), yeast fermentation product (YFP), a mix of Lactobacillus acidophilus and Propionibacterium freudenreichii (MLP), and Lactobacillus plantarum included as additives in dairy cows’ diets on in vitro ruminal fermentation and gas production (GP); and 2) to evaluate the effects of L. plantarum as direct-fed microbials (DFM) in dairy cows’ diets on in vitro ruminal fermentation, GP, nutrient digestibility, and N metabolism. Three experiments were carried out: Exp. 1 had the objective to compare all additives regarding ruminal fermentation parameters: an Ankom GP system was used in a completely randomized design, consisting of four 48 h incubations, and eight replications per treatment. There were eight treatments: a basal diet without additive (CTRL) or with one of the following additives: LY, YFP, MLP, or L. plantarum at four levels (% of diet Dry Matter (DM)): 0.05% (L1), 0.10% (L2), 0.15% (L3), and 0.20% (L4). In Exp. 2, a batch culture was used to evaluate ruminal fermentation, and CO2 and CH4 production using the same treatments and a similar experimental design, except for having 16 replications per treatment. Based on Exp. 1 and 2 results, Exp. 3 aimed at evaluating the effects of the L. plantarum on ruminal true nutrient digestibility and N utilization in order to evaluate the use of L. plantarum as DFM. The treatments CTRL, MLP, L1, and L2 were used in a replicated 4 × 4 Latin square design using a dual-flow continuous culture system. Data were analyzed using linear and nonlinear regression; treatment means were compared through contrasts, and L treatments in Exp. 1 and 2 were tested for linear, quadratic, and cubic effects. In Exp. 1, all treatments containing additives tended to reduce OM digestibility as well as reduced total volatile fatty acids (VFA) concentration and total GP. The YFP had greater OM digestibility than LY, and MLP treatment had greater total VFA concentration compared to L. plantarum treatments. In Exp. 2, additives reduced CO2 production, and there were no major differences in CH4. In Exp. 3, all additives reduced NH3-N concentration. In conclusion, pH and lactate concentration were not affected in all three experiments regardless of additive tested, suggesting that these additives may not improve ruminal fermentation by pH modulation; and L. plantarum may improve ruminal N metabolism when used as DFM in high-producing dairy cows’ diets, mainly by reducing NH3-N concentration.


Sign in / Sign up

Export Citation Format

Share Document