scholarly journals Effects of Abomasal or Intravenous Administration of Arginine on Milk Production, Milk Composition, and Concentrations of Somatotropin and Insulin in Plasma of Dairy Cows

1988 ◽  
Vol 71 (3) ◽  
pp. 658-665 ◽  
Author(s):  
J.L. Vicini ◽  
J.H. Clark ◽  
W.L. Hurley ◽  
J.M. Bahr
2019 ◽  
Vol 15 (02) ◽  
pp. 39-41
Author(s):  
H H Panchasara ◽  
A B Chaudhari ◽  
D A Patel ◽  
Y M Gami ◽  
M P Patel

The study was conducted to evaluate the effect of feeding herbal galactogogue preparation (Sanjivani biokseera) on the milk yield and milk constituents in lactating Kankrej cows. Thirty-two lactating Kankrej cows in their 1st to 6th lactation were taken for the experiment from 3 days after calving up to 52 days postpartum. All the animals were fed as per the standard seasonally available roughages and concentrates to meet their nutritional requirements. The cows were randomly divided into two uniform groups of 16 cows in each according to initial milk yield and milk composition. The animals in group-I were not given any supplement and served as control. The animals in group-II were given Sanjivani biokseera (Naturewell Industries) @ 60 g per day for 1-month, commencing 3 days after calving, in addition to the usual feeds/fodders. A clear difference was observed in milk yield from day 8 onward of experiment between groups with significant (plessthan0 0.05) higher values from day 16-52 in cows fed herbal galactogogue as compared to control, but no such distinct effect on milk constituents was observed on day 52 when analyzed. The use of herbal galactogogue significantly (p lessthan 0.05) increased the overall average of 52 days milk production, which was 9.34 ± 0.21 lit/day in supplemented as compared to 7.75 ± 0.26 lit/day in control animals. It was concluded that herbal galactogogue (Sanjivani biokseera) could increase milk yield in lactating dairy cows through its galactopoetic property and improved rumen environment.


Author(s):  
J G Doherty ◽  
C S Mayne

Several studies have shown increased silage dry-matter intake (SDMI) and improved milk fat concentrations in dairy cows offered restricted fermented grass silages compared to more extensively fermented silages. A recent study suggested that differences in silage intakeper serather than an alteration in rumen fermentation may be responsible for the changes in milk composition observed in the previous studies (Doherty and Mayne, 1993). The aim of the present study was to examine the effect of changes in concentrate composition on milk production parameters in dairy cows offered grass silages of contrasting fermentation type.Two direct cut grass silages were prepared using either an inoculant, containing a single strain ofLactobacillus plantarum, (Ecosyl, 3 1/t fresh weight, Zeneca Products Ltd) or a mixture of aliphatic carboxylic acids (Maxgrass, 6 1/t fresh weight, BP Chemicals Ltd). Two concentrates (high starch or high fibre) were formulated containing either: barley, 300; wheat, 355; and soyabean-meal, 270 g/kg (high starch) or unmolassed sugar-beet pulp, 555; citrus pulp, 100; and soyabean-meal, 270 g/kg (high fibre).


1978 ◽  
Vol 45 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Y. L. P. Le Du ◽  
R. D. Baker ◽  
J. M. Barker

SummaryTwo experiments with dairy cows and one with suckler cows and their calves were conducted to examine the use of secretion rate measurements for estimating total milk production. In the first experiment both 4- and 6- h intervals between measurements gave similar estimates of total 7-d milk yield. The second experiment compared estimated and measured milk composition as well as yield. Milk and solids-not-fat yields were underestimated with dairy cows as a result of an extended milking interval before measurement. However, fat yield was overestimated, indicating that all residual milk was not removed at the first oxytocinaided milking. It was concluded that for the beef cow, previous interval effects would be eliminated by the frequency of calf suckling, but that residual milk effects might cause a 3–6% and a 16% overestimation of milk and fat yields respectively.In the third experiment, the milk yield of suckler cows was estimated from measurements of secretion rate and from changes in calf weight; good agreement was obtained provided there were at least 3 consecutive controlled sucklings.


1998 ◽  
Vol 1998 ◽  
pp. 146-146 ◽  
Author(s):  
R. H. Phipps ◽  
J.D. Sutton ◽  
A. K. Jones

Interest in the use of whole crop cereals as a complementary forage for dairy cows has developed in Europe over the last fifteen years. Initial studies in the UK concluded that near maximum dry matter (DM) yield/ha of whole crop wheat (WCW) occurred in late July/early August when crops contained at least 500 g/kg DM. However, it was noted that when these crops were ensiled they tended to be aerobically unstable. To minimise this problem it was recommended that these crops were preserved with urea rather than being ensiled. Early studies with dairy cows demonstrated that the use of both urea-treated and low DM fermented WCW increased forage intake and milk yield but effects on milk composition were inconsistent (Leaver and Hill, 1992, Phipps et al., 1995). Concern has been expressed that the use of urea in crop preservation was environmentally unacceptable and that high DM fermented WCW offered a possible alternative, which would provide high DM yields/ha of a starch-rich crop. The objective of the current study was to examine the effect of crop maturity on feed intake and milk production of dairy cows. An additional treatment was included to examine the effectiveness of an additive containing L. buchneri designed to improve aerobic stability.


2001 ◽  
Vol 2001 ◽  
pp. 192-192
Author(s):  
R.E. Lawson ◽  
A.R. Moss ◽  
C. Rymer ◽  
J.S. Blake

Mansbridge (1995) reported that replacing ground wheat with a mix of ground wheat and maize grain increased milk protein concentration, which led the authors to speculate that increased inclusion of maize grain increased rumen by-pass starch. Indeed, de Visseret al(1990) reported that feeding less rapidly degradable starches has led to increased milk protein concentration.The objective of this study was to examine the effects of starch concentration and source on feed intake, milk yield and milk composition of dairy cows.


2019 ◽  
Vol 3 (4) ◽  
pp. 1133-1142 ◽  
Author(s):  
Rodrigo O Rodrigues ◽  
Reinaldo F Cooke ◽  
Franciele C Firmino ◽  
Mayara K R Moura ◽  
Beatriz F Angeli ◽  
...  

Abstract This experiment compared milk production, milk composition, and physiological responses in lactating dairy cows supplemented with or without a mixture of condensed tannins, encapsulated cinnamaldehyde, curcumin, capsaicin, and piperine. Thirty-six lactating, multiparous, pregnant ¾ Holstein × ¼ Gir cows were maintained in a single drylot pen with ad libitum access to water and a total-mixed ration and were milked twice daily (d –7 to 84). On d 0, cows were ranked by days in milk (86 ± 3 d), milk yield (27.8 ± 1.0 kg), body weight (BW; 584 ± 10 kg), and body condition score (BCS; 3.04 ± 0.06) and assigned to receive (SUPP; n = 18) or not (CON; n = 18) 30 g/cow daily (as-fed basis) of Actifor Pro (Delacon Biotechnik GmbH; Steyregg, Austria). From d 0 to 84, SUPP cows individually received (as-fed basis) 15 g of Actifor Pro mixed with 85 g of finely ground corn through self-locking headgates before each milking of the day. Each CON cow concurrently received 85 g (as-fed basis) of finely ground corn through self-locking headgates. Throughout the experimental period (d –7 to 84), cows from both treatments were administered 500 mg of sometribove zinc at 14-d intervals and were monitored daily for morbidity, including clinical mastitis. Individual milk production was recorded daily, whereas milk samples were collected weekly for analysis of milk composition. Cow BW, BCS, and blood samples were also collected weekly. Cows receiving SUPP gained more BCS (P = 0.05) and had greater (P = 0.04) milk yield during the experiment compared with CON cows (0.22 vs. 0.07 of BCS, SEM = 0.05; 29.5 vs. 27.9 kg/d, SEM = 0.5). Milk composition did not differ (P ≥ 0.15) between SUPP and CON cows; hence, SUPP cows also had greater (P ≤ 0.02) production of fat-corrected and energy-corrected milk. Incidence of clinical mastitis did not differ (P ≥ 0.49) between SUPP and CON cows. No treatment differences were also detected (P ≥ 0.21) for serum concentrations of glucose and serum urea N. Mean serum haptoglobin concentration during the experiment was greater (P = 0.05) in CON vs. SUPP cows. Cows receiving SUPP had less (P ≤ 0.04) serum cortisol concentrations on d 21 and 42, and greater (P ≤ 0.05) serum concentrations of insulin-like growth factor-I on d 7, 35, and 63 compared with CON cows (treatment × day interactions; P ≤ 0.02). Collectively, supplementing phytogenic feed ingredients improved nutritional status and milk production of lactating ¾ Holstein × ¼ Gir cows.


2005 ◽  
Vol 85 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Rachel Gervais ◽  
Richard Spratt ◽  
Martin Léonard ◽  
P. Yvan Chouinard

Dietary conjugated linoleic acid (CLA) supplements have been shown to reduce milk fat synthesis in dairy cows. A rumen-inert source of CLA is required for commercial feed applications. The conversion of dietary lipids to a calcium salt is considered as a method to counter the extensive hydrogenation of dietary lipids that occurs in the rumen. Our objective was to determine whether feeding calcium salts of CLA under commercial conditions would affect milk production, milk composition and blood metabolic profile. A total of 240 dairy cows from eight farms were blocked according to the calving date, and randomly assigned to four treatments providing CLA at 0, 8, 16 and 32 g d-1. Milk production was recorded and milk was sampled on day 0, 7, 14, 28 and 42 of the feeding period. Blood samples were taken on day 42 from early-lactating cows (< 157 d in milk) to determine the metabolic profile. Milk fat yield was decreased 11, 20 and 28%, and milk fat concentration was reduced 13, 22 and 28% (linear; P < 0.001) when cows received 8, 16 and 32 g d-1 of CLA, respectively. Milk yield, milk protein and blood metabolic parameters were not affected by experimental treatments. Calcium salts of CLA can be used as an effective tool to manage milk fat content on commercial dairy farms. Key words: Conjugated linoleic acid, milk fat, ruminally inert fat


1990 ◽  
Vol 57 (4) ◽  
pp. 455-464 ◽  
Author(s):  
Jai-Jun Choung ◽  
David G. Chamberlain ◽  
Phillip C. Thomas ◽  
Ian Bradbury

SummaryResponses of dairy cows given silage diets to the intraruminal infusion of urea in progressively increasing doses were studied in four experiments, two with non-lactating cows and two with lactating cows. No clinical symptoms of NH3 toxicity were observed in any of the experiments. When urea was infused continuously, silage intake was depressed (P < 0·05) when the total supply of N exceeded the equivalent of 250g crude protein (CP)/kg DM in the total diet. However, when the urea load was administered twice daily, as opposed to continuously, intake depression (P < 0·05) occurred at the equivalent of 170g CP/kg DM. At the higher doses of urea, concentrations of NH3 in peripheral blood increased and were accompanied by increased concentrations of glucose and reduced levels of insulin in plasma. In general, responses of milk production followed those of silage intake but there was evidence of greater proportional reductions in the yield of lactose relative to that of fat and protein. It is concluded that the voluntary intake of high-protein silages may be depressed by factors associated with high rates of absorption of NH3 from the rumen.


2005 ◽  
Vol 85 (3) ◽  
pp. 413-416 ◽  
Author(s):  
F. B. Cavalieri ◽  
G. T. Santos ◽  
M. Matsushita ◽  
H. V. Petit ◽  
L. P. Rigolon ◽  
...  

Cows were fed whole flaxseed or calcium salts of soybean oil as a fat source. Cows fed flaxseed had lower (P < 0.01) milk yield and higher (P < 0.01) percentages of fat and protein than cows fed calcium salts. Feeding whole flaxseed and calcium salts of soybean oil increased, respectively, the concentrations of alpha-linolenic acid and conjugated linoleic acid in milk. Key words: Flaxseed, fatty acids, fat supplement


2008 ◽  
Vol 88 (2) ◽  
pp. 331-337 ◽  
Author(s):  
M. Eugène ◽  
D. Massé ◽  
J. Chiquette ◽  
C. Benchaar

A meta-analysis was conducted to statistically determine the effects of lipid supplementation on methane (CH4) production, milk production, and milk composition of lactating dairy cows. For this purpose, a data base was built using seven scientific publications (25 diets) available in the literature and reporting the effects of lipid supplementation on CH4 production, milk production, and milk composition. Lipid supplementation decreased (P < 0.05) dry matter intake (DMI) by 6.4% compared with control diets, whereas production of milk and 4% FCM and milk composition were not changed (P > 0.05). Lipid supplementation decreased (P < 0.05) CH4 production by 9%, either expressed as MJ d-1 or as a percentage of gross energy intake (GEI), digestible energy intake (DEI), or metabolizable energy intake (MEI). This reduction was mainly a consequence of a decreased DMI. Key words: Meta-analysis, lipid supplementation, methane, dairy cows, lactating


Sign in / Sign up

Export Citation Format

Share Document