scholarly journals Model for Testing Compressive and Flexural Strength of Sisal Fibre Reinforced Compressed Earth Blocks in the Absence of Laboratory Facilities

2015 ◽  
Vol 3 (3) ◽  
pp. 132-145
Author(s):  
Saul Sitati Namango ◽  
Diana Starovoytova Madara ◽  
Augustine B. Makokha ◽  
Edwin Ataro

This study proposes a method of indirectly evaluating strength and therefore durability characteristics of compressed earth blocks in the absence of the normally expensive laboratory facilities. The method, with respect to compressed earth blocks reinforced with sisal fibres, is recommended for application particularly in rural areas of Africa. The developed method entails loading a compressed earth block sample with increasing amounts of weight till the sample raptures (total dead weight) under the load. The weight is then taken and a comparison is made with the standard value of compressive and flexural strength of the said sample. A conversion factor between this developed method and the conventional way of determining compressive and flexural strength has been computed. It has been established that the total dead weight is 47.25 times the flexural strength while the same is 66.4 times the compressive strength. The primary advantage of the proposed method is that it can easily be adapted at village level by people who have little scientific knowledge.

2021 ◽  
pp. 136943322110463
Author(s):  
Tiegang Zhou ◽  
Xin Wang ◽  
Ben Ma ◽  
Zaiyu Zhang ◽  
Wei Tan

At present, adobe houses with traditional characteristics are still widely used in rural areas in western China, but their seismic performance is relatively poor, and they often suffer serious damage under earthquake. To improve the seismic performance of traditional adobe buildings while retaining the characteristics of residential buildings, the mechanical properties of compressed earth blocks (CEB) were tested in this study, and the microstructure characteristics of CEB after failure were analyzed by electron microscope. On this basis, six adobe wall specimens were designed and tested by quasi-static loading to investigate the influence of core columns and different types of bricks on its seismic performance. The results show that the core column can improve the bearing capacity and shear capacity of hollow CEB, and it can also significantly increase the bearing capacity, energy dissipation capacity, and ductility of CEB wall. In general, the adobe wall with core columns shows excellent seismic performance, which can provide a new choice for improving the seismic performance of the adobe house.


2011 ◽  
Vol 261-263 ◽  
pp. 501-505
Author(s):  
Stanley R. Russell ◽  
Jana Buchter

Two of the primary waste components of the Phosphates benefaction process, sand and clay have been used as building materials for thousands of years. A process known as rammed earth has been used extensively around the world in buildings that have lasted for centuries. Because earth is the main ingredient in rammed earth it has recently enjoyed new popularity as a so called “green” building material. In a similar process earth is compressed into blocks which are then used in the same way as conventional masonry units to build walls. In the compressed earth block [CEB] method, individual units can be manufactured and stockpiled for later use rather than being fabricated on site as in the rammed earth process. This research project will investigate the potential use of waste clay and tailing sand from the phosphate benefaction process as the primary ingredients in compressed earth blocks for commercial and residential construction projects.


2021 ◽  
Vol 14 (1) ◽  
pp. 102
Author(s):  
Sihem Larbi ◽  
Abdelkrim Khaldi ◽  
Walid Maherzi ◽  
Nor-Edine Abriak

Due to the increase in demand for building materials and their high prices in most developing countries, many researchers are trying to recycle waste for use as secondary raw materials. The aim of this study is the optimization of a mixture of compressed earth blocks based on two sediments. These sediments were tested through the Vicat test to determine the proportion of each one and the optimal water content. The mixtures were treated by adding 10% of blast furnace slag and different proportions of dissolved glass in a NaOH solution. The results indicated that the mixture of 70% Oran sediments with 30% Sidi Lakhdar sediments treated with 4% glass waste produced a CEB (compressed earth block) with high compressive strength with low porosity. In addition, formulated CEBs have a very good resistance to water immersion.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6906
Author(s):  
Peter Donkor ◽  
Esther Obonyo ◽  
Christopher Ferraro

There are ongoing research efforts directed at addressing strength limitations of compressed earth blocks (CEB) that inhibit their deployment for structural applications, particularly in areas where masonry systems are regularly subjected to lateral loads from high winds. In this paper, the authors focus specifically on the extent to which polypropylene (PP) fibers can be used to enhance the flexural performance of CEB. Cementitious matrices used for CEB production exhibit low tensile and flexural strength (brittle) properties. This work investigates plain (unreinforced) and fiber-reinforced specimens (short flexural beams) with fiber mass content of 0.2, 0.4, 0.6, 0.8, and 1.0% and ordinary Portland cement (OPC) content of 8%. The influence of the inclusion of fiber was based on tests conducted using the Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (ASTM C1609). Material properties that were quantified included first-peak strength, peak strength, equivalent flexural strength, residual strength, and flexural toughness. There was an observed improvement in the performance of the soil-fiber matrixes based on these results of these tests. It was also observed that when the fiber content exceeded 0.6% and above, specimens exhibited a deflection- hardening behavior; an indication of improvement in ductility. An equivalent flexural strength predictive model is proposed.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Author(s):  
William D. Lawson ◽  
Chaitanya Kancharla ◽  
Priyantha W. Jayawickrama

2021 ◽  
Author(s):  
Mohamed Lahdili ◽  
Fatima-Ezzahra El Abbassi ◽  
Siham Sakami ◽  
Ahmed Aamouche

1997 ◽  
Vol 30 (9) ◽  
pp. 545-551 ◽  
Author(s):  
Peter Walker ◽  
Trevor Stace

Sign in / Sign up

Export Citation Format

Share Document