Seismic performance of new adobe bricks masonry: Design and experiment

2021 ◽  
pp. 136943322110463
Author(s):  
Tiegang Zhou ◽  
Xin Wang ◽  
Ben Ma ◽  
Zaiyu Zhang ◽  
Wei Tan

At present, adobe houses with traditional characteristics are still widely used in rural areas in western China, but their seismic performance is relatively poor, and they often suffer serious damage under earthquake. To improve the seismic performance of traditional adobe buildings while retaining the characteristics of residential buildings, the mechanical properties of compressed earth blocks (CEB) were tested in this study, and the microstructure characteristics of CEB after failure were analyzed by electron microscope. On this basis, six adobe wall specimens were designed and tested by quasi-static loading to investigate the influence of core columns and different types of bricks on its seismic performance. The results show that the core column can improve the bearing capacity and shear capacity of hollow CEB, and it can also significantly increase the bearing capacity, energy dissipation capacity, and ductility of CEB wall. In general, the adobe wall with core columns shows excellent seismic performance, which can provide a new choice for improving the seismic performance of the adobe house.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2942
Author(s):  
Yun Liu ◽  
Gonglian Chen ◽  
Zhipeng Wang ◽  
Zhen Chen ◽  
Yujia Gao ◽  
...  

Autoclaved aerated concrete (AAC) self-insulation block masonry is often used for the infill walls in steel and concrete frame structures. To work together with the frame under earthquake action, it is essential to understand the seismic behavior of AAC self-insulation block masonry walls. In this paper, six AAC self-insulation block masonry walls were experimentally studied under the pseudo static test. The load-displacement hysteretic curves were drawn with the test data. The failure characteristics, loading capacity, stiffness degeneration, energy dissipation capacity and hysteretic behavior are analyzed. The results indicate that the blocks underwent internal failure due to the lower strength with a larger size, but the walls had good energy dissipation capacity with a rational bearing capacity. Accompanied by the influence of vertical compressive stress on the top surface of the walls, the cracking resistance, ultimate bearing capacity, deformability and energy dissipation capacity of the walls were affected by the masonry mortar joints. Comparatively, the walls with thin-layer mortar joints had better seismic performance than those with insulation mortar joints or with vertical joints filled by mineral wool plates. Finally, the shear capacity of the walls under seismic load is evaluated referring to the formulas of current design codes for masonry walls.


2013 ◽  
Vol 680 ◽  
pp. 234-238
Author(s):  
Jin Li Qiao ◽  
Wen Ling Tian ◽  
Ming Jie Zhou ◽  
Fang Lu Jiang ◽  
Kun Zhao

In order to validate the seismic performance of reinforced concrete grid-mesh frame wall , four grid frame walls in half size is made with different height-width ratios and different grid forms in the paper. Two of them are filling with cast-in-place plaster as filling material. According to the experimental results of these four walls subjected to horizontal reciprocating loads, we know that the grid-mesh frame wall's breaking form are in stages and multiple modes, and the main influencing factors are height-width ratio and grid form, what's more, with cast-in-place plaster as fill material, could not only improve the level of the wall bearing capacity and stiffness, but also improve the ductility and seismic energy dissipation capacity.


2020 ◽  
Vol 23 (13) ◽  
pp. 2928-2941
Author(s):  
Qunyi Huang ◽  
John Orr ◽  
Yanxia Huang ◽  
Feng Xiong ◽  
Hongyu Jia

To improve both seismic performance and thermal insulation of low-rise housing in rural areas of China, this study proposes a load-bearing prefabricated composite wall panel structure that achieves appropriate seismic performance and energy efficiency using field-assembled load-bearing prefabricated composite wall panels. A 1:2 scale prototype built using load-bearing prefabricated composite wall panel is subjected to quasi-static testing so as to obtain damage characteristics, load-bearing capacity and load–displacement curves in response to a simulated earthquake. As a result, seismic performance indicators of load-bearing capacity, deformation and energy-dissipating characteristics, are assessed against the corresponding seismic design requirements for rural building structures of China. Experimental results indicate that the earthquake-resistant capacity of the prototype is 68% higher than the design value. The sample has a ductility factor of 4.7, which meets the seismic performance requirement mandating that the ductility factor of such concrete structures should exceed 3. The design can be further optimized to save the consumption of material. This shows that the load-bearing prefabricated composite wall panel structure developed here has decent load-bearing capacity, ductility and energy dissipation abilities, a combination of which is in line with the seismic design code. A new construction process proposed here based on factory prefabrication and field assembly leads to a considerable reduction of energy consumption.


2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


2021 ◽  
Vol 11 (6) ◽  
pp. 2688
Author(s):  
Shaochun Ma ◽  
Lianghui Li ◽  
Peng Bao

The research objective of this study was the seismic performance of double-row reinforced ceramsite concrete sandwich wall panels. The feasibility of upgrading a new wall panel from a non-load-bearing partition wall to a load-bearing seismic wall was examined by conducting cyclic load tests on five wall panel specimens. The test piece was a sandwich thermal insulation structure that could achieve a good protection distance between the thermal insulation material and the fire source so that the fire prevention problem could be solved. At the same time, the problem of easy fall-off of the insulation system was also solved. The specimens were divided into three groups, including three double-row reinforced ceramsite concrete sandwich wall panels with different dosages of alkali-resistant glass fiber, a double-row reinforced ordinary concrete sandwich wall panel, and a solid concrete ceramic wallboard. The effects of different dosages of alkali-resistant glass fiber, construction forms, and bearing side plate materials on the seismic performance of the sandwich wall panels were investigated separately for the specimens. From the analysis of the specimen results (damage characteristics, hysteresis curves, energy dissipation capacity, bearing capacity, ductility, longitudinal reinforcement strain, and stiffness degradation), it could be seen that among the five types of wallboard, the double-row reinforced ceramsite concrete sandwich wall panel with 0.3% fiber content had the best ductility and energy dissipation capacity. Adding fiber could solve or improve the problem of the low ultimate bearing capacity of ceramsite concrete as the wallboard’s bearing material. Compared with the same size solid ordinary concrete wallboard, the bearing capacity of the double-row reinforced ceramic concrete sandwich panel was slightly reduced. However, the additional seismic performance indexes were relatively superior. Through the analysis of the test results, it was shown that, when considering the thermal performance and seismic capacity, the new wall panel had good prospects for engineering applications.


2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


2015 ◽  
Vol 3 (3) ◽  
pp. 132-145
Author(s):  
Saul Sitati Namango ◽  
Diana Starovoytova Madara ◽  
Augustine B. Makokha ◽  
Edwin Ataro

This study proposes a method of indirectly evaluating strength and therefore durability characteristics of compressed earth blocks in the absence of the normally expensive laboratory facilities. The method, with respect to compressed earth blocks reinforced with sisal fibres, is recommended for application particularly in rural areas of Africa. The developed method entails loading a compressed earth block sample with increasing amounts of weight till the sample raptures (total dead weight) under the load. The weight is then taken and a comparison is made with the standard value of compressive and flexural strength of the said sample. A conversion factor between this developed method and the conventional way of determining compressive and flexural strength has been computed. It has been established that the total dead weight is 47.25 times the flexural strength while the same is 66.4 times the compressive strength. The primary advantage of the proposed method is that it can easily be adapted at village level by people who have little scientific knowledge.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liu Tingbin ◽  
Jia Rubo ◽  
Pei Xianke ◽  
Zhang Jiawei ◽  
Zhao Jianchang

Six brick masonry specimens (two unreinforced specimens, two reinforced specimens, and two specimens reinforced after being damaged), which have different aspect ratios, were tested under low-frequency cyclic loading. The seismic performances of these specimens, including failure characteristics, deformation capacity, carrying capacity, energy dissipation capacity, hysteresis characteristics, and stiffness degradation, were analyzed. The following results were obtained: the ductility of the damaged walls could be significantly improved after they were reinforced with embedded horizontal steel bars; the ultimate shear capacity of the damaged brick masonry walls with the aspect ratios of 1.8 and 0.5 was improved by 6.8% and 4.7%, respectively; the displacement corresponding to the ultimate bearing capacity was close to that of the unreinforced brick masonry wall; the hysteresis loop of the reinforced wall became plumper and encompassed a larger area; after the ultimate load was reached, a clear yielding platform appeared in the skeleton curve of the reinforced wall; the reinforced wall exhibited good ductility, after entering plastic stage; the energy dissipation capacity of the reinforced wall was significantly greater than that of the unreinforced wall. In conclusion, the seismic performance of the damaged brick masonry wall can be improved by embedding horizontal steel bars, and this reinforcing method can be applied in the postseismic reconstruction process.


2020 ◽  
Vol 24 (1) ◽  
pp. 107-118
Author(s):  
Tiegang Zhou ◽  
Zaiyu Zhang ◽  
Zhifan Su ◽  
Peng Tian

Rammed earth wall load-bearing dwellings are widely distributed in western China. Rammed earth has the advantages of warm in winter and cool in summer, and it is a kind of sustainable construction material. In recent years, in previous earthquakes, the collapse of rammed earth buildings is serious, resulting in huge losses of personnel and property. To improve the seismic performance of rammed earth buildings and retain the characteristics of local buildings, a reinforcement measure with additional structural columns is proposed in this article. Three kinds of structural columns are designed, which are cast-in-place concrete, square steel tube, and concrete-filled square steel tube core column. Through the quasi-static experimental study on the rammed earth wall, the effects of different structural columns on the failure shape, bearing capacity, deformation capacity, and energy dissipation capacity of the wall are compared. The test results show that adding structural columns on both sides of the wall can effectively restrain the rammed earth wall, restrain its brittle failure, significantly improve the energy dissipation capacity of the wall, and obviously improve the seismic performance of the wall. This measure is applicable to rammed earth buildings and provides theoretical support for improving the seismic performance of traditional dwellings.


2014 ◽  
Vol 578-579 ◽  
pp. 305-308
Author(s):  
Ya Feng Xu ◽  
Shao Jie Zhu ◽  
Pi Yuan Xu ◽  
Riyad S. Aboutaha

In this paper, the finite element analysis software ABAQUS is used to study the seismic performance of the joint of crisscross concrete-filled steel tube core column-steel beam tested by the pseudo static simulation under low cyclic loading. Then we can get the load-displacement curves of the joint when the axial compressive ratios are 0.2~0.9. By the data analysis can be drawn: the joint of crisscross concrete-filled steel tube core column and steel beam has good ductility and strong plastic deformation capacity, and it can absorb the seismic energy largely; within range of smaller axial compression ratios, the ultimate bearing capacity of the joint has increased with the increasing of axial compression force, however, in range of larger axial compression ratios, the ultimate bearing capacity of the joint has reduced with increasing of the axial compression force; and ductility of the beam-column joint has no obvious decline when the axial force increases.


Sign in / Sign up

Export Citation Format

Share Document