scholarly journals Optimization of truck allocation in open pit mines using differential evolution algorithm

Author(s):  
Willian B. De Melo

The allocation of trucks in open pit mines is a field with great potential for optimizing resources and applying advanced computer modeling techniques, mainly because many companies still choose to use manual allocation, which is premised on the decisions made by the operator, being subject to common failures and not reaching the maximum potential that the equipment can provide. Therefore, this work focuses on optimizing the allocation of trucks in order to increase production, reducing queue time and keeping ore grades within proper limits. The proposed algorithm was based on the differential evolution technique, where two types of mutation operators were used: rand/1/bin and best/1/bin, thus verifying the most suitable to solve the problem. The trucks were allocated in the ore loading and unloading process, aiming to improve the production capacity in a virtual mine. The results brought a convergence to the maximum global production, in addition to which, the allocation of unnecessary transport equipment to the planned routes was avoided. The two mutation operators compared had certain advantages and disadvantages, each better adapting to certain types of situations. The proposed technique can still be extended to other areas, for example, in the transport of grain on the road network or in the implementation of an allocation in freight cars that transport grain.

Author(s):  
S. Mikrut

The UAV technology seems to be highly future-oriented due to its low costs as compared to traditional aerial images taken from classical photogrammetry aircrafts. The AGH University of Science and Technology in Cracow - Department of Geoinformation, Photogrammetry and Environmental Remote Sensing focuses mainly on geometry and radiometry of recorded images. Various scientific research centres all over the world have been conducting the relevant research for years. The paper presents selected aspects of processing digital images made with the UAV technology. It provides on a practical example a comparison between a digital image taken from an airborne (classical) height, and the one made from an UAV level. In his research the author of the paper is trying to find an answer to the question: to what extent does the UAV technology diverge today from classical photogrammetry, and what are the advantages and disadvantages of both methods? The flight plan was made over the Tokarnia Village Museum (more than 0.5 km<sup>2</sup>) for two separate flights: the first was made by an UAV - System FT-03A built by FlyTech Solution Ltd. The second was made with the use of a classical photogrammetric Cesna aircraft furnished with an airborne photogrammetric camera (Ultra Cam Eagle). Both sets of photographs were taken with pixel size of about 3 cm, in order to have reliable data allowing for both systems to be compared. The project has made aerotriangulation independently for the two flights. The DTM was generated automatically, and the last step was the generation of an orthophoto. The geometry of images was checked under the process of aerotriangulation. To compare the accuracy of these two flights, control and check points were used. RMSE were calculated. The radiometry was checked by a visual method and using the author's own algorithm for feature extraction (to define edges with subpixel accuracy). After initial pre-processing of data, the images were put together, and shown side by side. Buildings and strips on the road were selected from whole data for the comparison of edges and details. The details on UAV images were not worse than those on classical photogrammetric ones. One might suppose that geometrically they also were correct. The results of aerotriangulation prove these facts, too. Final results from aerotriangulation were on the level of RMS = 1 pixel (about 3 cm). In general it can be said that photographs from UAVs are not worse than classic ones. In the author's opinion, geometric and radiometric qualities are at a similar level for this kind of area (a small village). This is a very significant result as regards mapping. It means that UAV data can be used in mapping production.


2018 ◽  
pp. 1544-1569
Author(s):  
Deepak Dawar ◽  
Simone A. Ludwig

Video analytics is emerging as a high potential area supplementing intelligent transportation systems (ITSs) with wide ranging applications from traffic flow analysis to surveillance. Object detection and classification, as a sub part of a video analytical system, could potentially help transportation agencies to analyze and respond to traffic incidents in real time, plan for possible future cascading events, or use the classification data to design better roads. This work presents a specialized vehicle classification system for urban environments. The system is targeted at the analysis of vehicles, especially trucks, in urban two lane traffic, to empower local transportation agencies to decide on the road width and thickness. The main thrust is on the accurate classification of the vehicles detected using an evolutionary algorithm. The detector is backed by a differential evolution (DE) based discrete parameter optimizer. The authors show that, though employing DE proves expensive in terms of computational cycles, it measurably improves the accuracy of the classification system.


2020 ◽  
Vol 1 (3) ◽  
pp. 48-58
Author(s):  
Ya.D. Saprykin ◽  
◽  
V.I. Ryazantsev ◽  
A.A. Smirnov ◽  
◽  
...  

The article analyzes the existing methods for determining the driver's condition. Driving in a state of fatigue, according to various statistics, is the cause of a large number of road traffic accidents (RTA). The percentage of accidents in Russia associated with the driver falling asleep while driving in 2018 is about 20%, in the USA the number of accidents for the same reason reaches 100,000 per year. The aim of the work is to review existing approaches to recognizing driver fatigue and existing technical solutions in this area. The article discusses such approaches as fatigue recognition based on the physiological state of the driver, recognition based on the driver's behavior, namely his speech and visual signs while driving, fatigue determination based on the nature of the vehicle's movement on the road and based on the driver's actions on the controls, the approaches based on the subjective assessment of the driver's condition. The advantages and disadvantages of each of the approaches were analyzed. The paper also provides an overview of existing fatigue recognition systems from various manufacturers that are currently used on vehicles and are designed to warn the driver of impending fatigue. It was revealed that in modern conditions of road transport operation, the most optimal approaches to fatigue recognition are based on an assessment of the driver's impact on the steering wheel, visual signs of driver fatigue and the nature of the vehicle's movement on the road, therefore, it is proposed to further focus on these methods.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2909
Author(s):  
Roman Sikora ◽  
Przemysław Markiewicz

Road lighting is an important element of road infrastructure influencing on the road safety. It helps road users to identify potential hazards on the road and reduces the risk of a road accident. Improving the energy efficacy of road lighting installations requires using new technologies. Currently, high-pressure sodium (HPS) lamps are still most commonly used in road lighting. Many of the luminaires with HPS lamps are still in good technical condition and there is no economic justification for replacing them (except improving energy efficacy). One of the methods of improving their energy efficacy is to replace the electromagnetic control gear (ECG) with an electronic ballast (EB). This replacement may affect the colorimetric parameters of the HPS lamps. Two methods to the estimation change of colorimetric parameters after the replacement of ECG to EB were used. The first is CIE TN 001:2014 and the second is ANSI/IES TM-30-15. The article also presents the advantages and disadvantages of these methods in relation to the evaluation of changes in colorimetric parameters of HPS lamps after the replacement of the ECG with an EB. After the replacement of ECG to EB, the smallest reduction of Ra (colour rendering index) occurred for the 150 W lamp by 31.30% and the highest reduction for the 70 W lamp by 65.52%. Considering the changes of the fidelity indicator Rf and gamut indicator Rg, their changes are significantly smaller than for Ra. The smallest change of Rf value was observed for a 150 W lamp (6.00%) and the largest for a 70 W lamp by 25.00%. In case of Rg, similar changes were observed—for 150 W lamp by 9.26% and for 70 W lamp by 21.88%. The ANSI/IES TM-30-15 method is more suitable for evaluating colorimetric parameters after replacing ECG with EB. Using only Ra to evaluate changes of HPS lamps colorimetric parameters after replacing the ballast type can lead to incorrect conclusions concerning changes of colorimetric parameters. Based on the ANSI/IES TM-30-15 method, it has been proposed to introduce the Δf,g indicator which determines the change of colorimetric parameters based on fidelity and gamut colour indicator.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Zhongbo Hu ◽  
Shengwu Xiong ◽  
Qinghua Su ◽  
Xiaowei Zhang

The differential evolution algorithm (DE) is one of the most powerful stochastic real-parameter optimization algorithms. The theoretical studies on DE have gradually attracted the attention of more and more researchers. However, few theoretical researches have been done to deal with the convergence conditions for DE. In this paper, a sufficient condition and a corollary for the convergence of DE to the global optima are derived by using the infinite product. A DE algorithm framework satisfying the convergence conditions is then established. It is also proved that the two common mutation operators satisfy the algorithm framework. Numerical experiments are conducted on two parts. One aims to visualize the process that five convergent DE based on the classical DE algorithms escape from a local optimal set on two low dimensional functions. The other tests the performance of a modified DE algorithm inspired of the convergent algorithm framework on the benchmarks of the CEC2005.


2021 ◽  
Author(s):  
Zhian Huang ◽  
Yang Huang ◽  
Zhijun Yang ◽  
Jun Zhang ◽  
Yinghua Zhang ◽  
...  

Abstract Mine road dust is an important source of dust in mine operations. The dust produced on the road surface is a great hazard to the workers. Aiming at the road dust of an open-pit mine, this paper conducts physical and chemical analysis of a dust suppressant prepared by using sodium polyacrylate as a binder, sodium carbonate as a moisture absorbent, polyethylene glycol as a water-retaining agent, and alkyl glycoside as a surfactant. Characterization of characteristics and dust suppression performance. The results show that the dust suppressant has a pH of 11.03, a viscosity of 18.5 mPa·s, and a surface tension of 28.1 mN/m. The content of heavy metal ions contained is less than the maximum concentration defined by the national standard. Under the same temperature condition, the greater the humidity, the stronger the hygroscopicity, especially when the humidity is 30%, where the better hygroscopic effect than water is obvious. The dust suppressant also has good anti-evaporation properties and it keeps at 4–5% moisture content after 10 days at a normal temperature. Compared with water, the dust suppressant has better resistance to wind erosion and compression. Under the same conditions, the loss rate of water is 2 times that of the dust suppressant and the pressure of the dust suppressant sample is about 3 times that of water. The dust suppressant has a much higher dust removal efficiency for all dust and respirable dust than water under the same conditions. Finally, the test results and mechanism of the dust suppression effect of the dust suppressant are described and analyzed, which shows that the dust suppressant studied in this paper has good performance and is suitable for road dust prevention.


Author(s):  
Жданова ◽  
O. Zhdanova ◽  
Макарова ◽  
I. Makarova

This article outlines the existing safety problems on the road, describes the existing recognition systems of well-known automobile manufacturers, and considers advantages and disadvantages of existing solutions. The general scheme of solving the problem of objects detection and recognition was showed.


2021 ◽  
Vol 15 (2) ◽  
pp. 70-81
Author(s):  
Mohammad Kian ◽  
Seyed Hamid Hosseini ◽  
Mohammad Taji ◽  
Mehran Gholinejad

Purpose. Mineral projects are heavily influenced by risk factors. By providing evidence-based information and analysis to make informed decisions about how to choose between options, a risk assessment can be made. Methods. In this study, the relationships of 46 criteria and 10 dimensions affecting the risk of blasting operations were investigated in order to determine the significance, effectiveness, relative weight of the criteria and dimensions as well as to prioritize the risk criteria of blasting operations. For this purpose, the combination of the FDEMATEL method and FANP method are used as FDANP. Findings. The most important criterion is the lack of specialized knowledge (C1). The damage to manpower criterion (C46) will receive the greatest impact from other criteria. The criterion for implementing the explosion plan, without respecting the design principles (C12) has most interactions with other criteria and the failure to determine the amount of production capacity (low or high) criterion (C45) has the least interactions with other criteria. According to the FDANP method, the number of explosions in one stage (C14) is the first criterion of the blasting operations risk. Originality. By controlling this criterion, the effects and destructive consequences of blasting operations can be prevented. Controlling this criterion reduces the risk of blasting operations and also reduces the damage by C46 criterion. From comparison, human resources dimension (D1) is the most effective and natural hazards dimension (D10) has the greatest interactions with other dimensions and is most affected among the other dimensions. The production and extraction consideration dimension (D9) has the least interaction with other dimensions and is less important. Practical implications. By reducing the destructive effects of blasting operations, two favorable results will be achieved: the reduction of damage caused by undesirable consequences and the assignment of a greater share of blast energy to the desired outcomes.


2021 ◽  
Vol 116 (1) ◽  
pp. 236-241
Author(s):  
Diana Assankhankyzy Otegen

The paper is an analytical review of the currently existing methods of traffic flows modeling. The movement of vehicles on the road can be modeled in different ways. Mathematical models as tools that allow us to study complex processes in the real world, including transport infrastructure, without capital expenditures, are a popular tool for solving many problems in various spheres of the national economy. There are several approaches to mathematical modeling of traffic flows. In microscopic models, the law of motion of each car is set, depending on its current position, speed, characteristics of the movement of neighboring cars, and other factors. Microscopic models, in turn, can be divided into models that are continuous in space and time, and into models that are discrete in space and time, the so-called cellular automata. In macroscopic models, the transport flow is considered as a fluid flow with special properties. The equations of the macroscopic model establish the relationship between the flow, density, speed of movement, possibly acceleration, and so on. Macroscopic models can also be continuous or discrete. In continuous models, the change in the state of a road section without branches and intersections is usually described by partial differential equations. Modeling traffic flows is necessary because active experiments in the existing transport network are fraught with unpredictable consequences, and in many cases are not feasible at all. The work presents a description and analysis of the models, and of their advantages and disadvantages.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Hong Li ◽  
Li Zhang

Two mutation operators are used in the differential evolution algorithm to improve the diversity of population. An improved constraint-handling technique based on a comparison mechanism is presented, and then it is combined with the selection operator in the differential evolution algorithm to fulfill constraint handling and selection simultaneously. A differential evolution with two mutation strategies and a selection based on this improved constraint-handling technique is developed to solve bilevel programming problems. The simulation results on some linear and nonlinear bilevel programming problems show the effectiveness and efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document