scholarly journals Adsorption of Phenol from Aqueous Solution using Paper Waste

2019 ◽  
Vol 20 (1) ◽  
pp. 23-29
Author(s):  
Huda Adil Sabbar

The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature). The well-known Langmuir and Freundlich adsorption models were studied. The results show that the equilibrium data fitted to the Freundlich model with R2=0.9897 within the concentration range studied. The main objective of this study is finding the best mixing and conditions for phenol removal by adsorption via paper waste.

2013 ◽  
Vol 3 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Papita Das Saha ◽  
Jaya Srivastava ◽  
Shamik Chowdhury

The efficacy of seashells as a new adsorbent for removal of phenol from aqueous solutions was studied by performing batch equilibrium tests under different operating parameters such as solution pH, adsorbent dose, initial phenol concentration, and temperature. The phenol removal efficiency remained unaffected when the initial pH of the phenol solution was in the range of 3–8. The amount of phenol adsorbed increased with increasing initial phenol concentration while it decreased with increasing temperature. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 175.27 mg g−1 at pH 4.0, initial phenol concentration = 50 mg L−1, adsorbent dose = 2 g and temperature = 293 K. Analysis of kinetic data showed that the adsorption process followed pseudo-second-order kinetics. Activation energy of the adsorption process, calculated using the Arrhenius equation, was found to be 51.38 kJ mol−1, suggesting that adsorption of phenol onto seashells involved chemical ion-exchange. The numerical value of the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) indicated that adsorption of phenol onto seashells was feasible, spontaneous and endothermic under the examined conditions. The study shows that seashells can be used as an economic adsorbent for removal of phenol from aqueous solution.


2017 ◽  
Vol 76 (12) ◽  
pp. 3190-3194 ◽  
Author(s):  
Sevgi Ertuğrul Karatay ◽  
Gönül Dönmez ◽  
Zümriye Aksu

Abstract The use of microbial biomass as biosorbent for phenol removal has been extensively studied, but its removal by biosorption by thermophilic cyanobacterium Phormidium sp. has not been investigated to the best of our knowledge. In the present study, some important parameters for biosorption process were optimized, starting with testing the effects of different pH values ranging from 1 to 12, and then initial phenol concentrations of 45.1, 115.3, 181.4, 243.3, 339.9 mg/L on phenol uptake. The efficiency of removal from aqueous solution was higher within the pH 6–8 range, with the maximum of 100% at pH 7 after 24 hours of adsorption time. The highest specific rate was observed as 165.1 mg/g in the presence of 339.9 mg/l initial phenol concentration. The Freundlich adsorption models were fitted to the equilibrium data, which indicated that phenol ions were favourably adsorbed by Phormidium sp.


2016 ◽  
Vol 18 (2) ◽  
pp. 426-436 ◽  

<p>In this study, the removal of cadmium by using pumice coated with iron nanoparticles (INPs) from synthetic wastewater was investigated. The effects of parameters influencing adsorption: contact time (10-20 min), pH (3-9), initial cadmium concentration (25-125 mg l<sup>-1</sup>) and adsorbent dose (2-10 g l<sup>-1</sup>) were studied. The pumice stone used in this research was, first, crashed and then sieved with 20 mesh standard sieves (0.85 mm); finally, it was coated with INPs. An atomic absorption spectrophotometer was used to measure cadmium contents and isotherm models and adsorption kinetics were studied. The results showed the adsorption process of cadmium reached equilibrium at contact time of 80 min. With increasing pH solution, the efficiency enhanced which peaked at pH 7-8. Cadmium concentration increase resulted in a decrease in efficiency, whereas adsorbent dose increase improved it. Equilibrium data of adsorption followed isotherms models: Langmuir and Freundlich. The highest removal efficiency and adsorption capacity were, respectively, 83% and 17.27 mg g<sup>-1</sup>. Furthermore, absorption kinetics is better described by the pseudo second-order model. According to the results obtained, pumice coated with INPs is an effective adsorbent and can be introduced as a suitable option in practical applications</p>


2011 ◽  
Vol 233-235 ◽  
pp. 91-94
Author(s):  
Feng Han ◽  
Wen Hong Li ◽  
Xuan Tang ◽  
Dong Li

The adsorption equilibrium and thermodynamics of pigment extracted from Fenugreek after degumming on macroporous resins was investigated under differentinitial concentrations. The suitability of the Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The model fitness was determined by R2 . Thermodynamic parameters were calculated by the Van’t Hof equation.The results showed that Freundlich model gave a better fit of adsorption isotherms than Langmuir models. The positive value of enthalpy(∆H) indicated that the adsorption was endothermic, the negative value of Gibbs free energy (∆G) showed the spontaneous and favoured nature of adsorption, and the entropy(∆S) was positive.The resins LS-46 showed an effective adsorbtion for Fenugreek yellow pigment.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiao Chen ◽  
Yan Liang ◽  
Xuefei Zhou ◽  
Yanling Zhang

A novel non-photo-dependent semiconductor catalyst (CT) was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water).


2014 ◽  
Vol 556-562 ◽  
pp. 282-285
Author(s):  
Li Fang Zhang ◽  
Zhao Shao ◽  
Chun Yang Jiang

In this study, Biosorption of Ni (II) ions from aqueous solution by using biomass ofAspergillusnigerwas investigated. Different parameters such as initial pH, Ni (II) ions concentration, contact time and temperature were explored. The biosorption of Ni (II) ions was highly pH dependent and the optimum pH for biosorption of Ni (II) ions was found to be 7.0. The biosorption equilibrium was established in about 30min of contact time. Ni (II) ions removal increased with increasing temperature in the studied range. Equilibrium uptake of Ni (II) ions onto biomass increased with increasing initial Ni (II) ions concentration (20-300mg/L). The Langmuir and Freundlich isotherm models were applied to experimental equilibrium data and the Langmuir model better described the equilibrium metal uptake than the Freundlich model. These results suggest that the biomass ofAspergillusnigeris a promising biosorbent for removal of nickel (II) ions from the wastewater.


2019 ◽  
Vol 7 (1) ◽  
pp. 029
Author(s):  
Nelly Wahyuni ◽  
Imelda H. Silalahi ◽  
Dina Angelina

Abstrak Fenol merupakan polutan yang sangat berbahaya di lingkungan karena bersifat racun dan sulit terdegradasi oleh organisme pengurai. Lempung alam yang berasal dari Kecamatan Capkala, Kabupaten Bengkayang  akan dikaji penggunaannya sebagai adsorben fenol. Adsorpsi dilakukan dengan metoda batch pada variasi waktu kontal dan konsentrasi awal fenol. Data kesetimbangan adsorpsi diuji dengan isoterm Langmuir dan Freundlich. Hasil penelitian menunjukkan waktu kontak optimum adsorpsi adalah 4 jam. Proses adsorpsi fenol  oleh lempung alam  mengikuti model isoterm adsorpsi Langmuir dengan kapasitas adsorpsi sebesar 0,65mg/g. Kata Kunci: fenol, Freundlich, isoterm adsorpsi, Langmuir, lempung alamAbstract Phenol is a pollutant that is very dangerous in the environment because it is toxic and difficult to degrade by decomposing organisms. Natural clay from Capkala District, Bengkayang Regency will be studied as phenol adsorbent. Batch experiments were carried out by varying the parameters like contact time of adsorption and initial phenol concentration. The equilibrium data were tested with Langmuir and Freundlich isotherm. The results showed that the optimum contact time for adsorption was 4 hours. The process of adsorption of phenol by natural clay follows the Langmuir adsorption isotherm model with an adsorption capacity of 0.65mg/g.  Keywords: adsorption isotherm, Freundlich, natural clay, phenol, Langmuir.


2017 ◽  
Vol 77 (2) ◽  
pp. 504-510 ◽  
Author(s):  
Tao Deng ◽  
Hongyu Wang ◽  
Kai Yang

Abstract Phenol is a toxic pollutant in many kinds of hypersaline industrial effluents that should be treated properly before discharged into water bodies. In this work, a halophilic strain which could utilize phenol as the sole source of carbon and energy was isolated. Based on 16S rRNA results, it was identified as a member of Citrobacter. The phenol biodegradation ability and cell growth of the strain was evaluated with the variation of initial phenol concentration and salinity. The effect of temperature and pH on phenol removal was also investigated. The results showed that the strain was capable of withstanding high phenol (up to 1,100 mg L−1) environment with varying salinity conditions (0–10% of NaCl). The optimal initial phenol concentration was 400 mg L−1, at which the average removal rates of phenol peaked at 10.8 mg L−1 h−1. The higher initial concentration of phenol could inhibit the microbial metabolism. The optimal temperature, pH, and salinity were 35 °C, 6.0, and 0%, respectively. Under these conditions, 400 mg L−1 of phenol could be completely degraded within 20 h. The high removal rates of phenol by the strain might provide an alternative for treating phenolic wastewaters containing high salinity.


2020 ◽  
Vol 32 (3) ◽  
pp. 495-500
Author(s):  
Rajesh Kumar ◽  
Harish Sharma ◽  
M.C. Vishwakarma ◽  
S.K. Joshi ◽  
N.S. Bhandari ◽  
...  

In the present study, removal efficiency (%) of Rubus ellipticus leaves (REL) as an adsorbent for the removal of Pb(II), Cu(II) and Cd(II) ions was investigated. Different parameters i.e., pH, contact time, temperature, adsorbent dose and initial metal ion concentration were investigated to obtain the optimum adsorption efficiency. At pH 4, a maximum adsorption was 84.6, 80.2 and 74.5 % for Pb(II), Cu(II) and Cd(II) ions, respectively. The maximum adsorption of all the three metal ions obtained at contact time (75 min), initial metal ion concentration (10 mg/L), temperature (25 ºC) and adsorbent dose (5.0 g). The equilibrium adsorption of Pb(II), Cu(II) and Cd(II) ions at different temperature was described by Langmuir, Freundlich and Temkin isotherms. The equilibrium data fitted well the Langmuir adsorption isotherm. Thermodynamic parameters like Gibb′s free energy (ΔGº), enthalpy (ΔHº) and entropy (ΔSº) were also calculated. The calculated parameters indicated that adsorption of Pb(II), Cu(II) and Cd(II) ions onto Rubus ellipticus leaves (REL) was spontaneous (ΔGº < 0), endothermic (ΔGº > 0). The feasibility of the process was evident from the positive value of ΔSº.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Nickheslat ◽  
Mohammad Mehdi Amin ◽  
Hassan Izanloo ◽  
Ali Fatehizadeh ◽  
Seyed Mohammad Mousavi

Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes.Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated.Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time.Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.


Sign in / Sign up

Export Citation Format

Share Document