scholarly journals Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiao Chen ◽  
Yan Liang ◽  
Xuefei Zhou ◽  
Yanling Zhang

A novel non-photo-dependent semiconductor catalyst (CT) was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water).

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Nickheslat ◽  
Mohammad Mehdi Amin ◽  
Hassan Izanloo ◽  
Ali Fatehizadeh ◽  
Seyed Mohammad Mousavi

Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes.Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated.Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time.Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.


2019 ◽  
Vol 15 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Omer Al Haiqi ◽  
Abdurahman Hamid Nour ◽  
Rushdi Bargaa ◽  
Bamidele Victor Ayodele

The upstream processing of crude oil is often associated with the presence of phenolic compounds when not properly treated could result in adverse effects on human health. The objective of the study was to investigate the effect of process parameters on the photocatalytic degradation of phenol. The ZnO/Fe2O3 nanocomposite photocatalyst was prepared by sol-gel method and characterized using various instrument techniques. The characterized ZnO/Fe2O3 nanocomposite displayed suitable physicochemical properties for the photocatalytic reaction. The ZnO/Fe2O3 nanocomposite was employed for the phenol degradation in a cylindrical batch reactor under solar radiation. The photocatalytic runs show that calcination temperature of the ZnO/Fe2O3 nanocomposite, catalyst loading, initial phenol concentration and pH of the wastewater significantly influence the photocatalytic degradation of phenol. After 180 min of solar radiation, the highest phenol degradation of 92.7% was obtained using the ZnO/Fe2O3 photocatalyst calcined at 400 ºC. This study has demonstrated that phenol degradation is significantly influenced by parameters such as calcination temperature of the ZnO/Fe2O3 nanocomposite, catalyst loading, initial phenol concentration and pH of the wastewater resulting in highest phenol degradation using the ZnO/Fe2O3 nanocomposite calcined at 400 ºC, initial phenol concentration of 0.5 mg/L, catalyst loading of 3 mg/L and pH of 3. Copyright © 2020 BCREC Group. All rights reserved


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


2016 ◽  
Vol 690 ◽  
pp. 103-108
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Thanakorn Wasanapiarnpong ◽  
Charusporn Mongkolkachit

Phenol and phenolic compounds in wastewater from various industries were toxic to water livings and human even in ppm concentration. A number of photocatalysts and adsorbents were applied for the low cost and good efficiency wastewater management to reduce phenol concentration in water. In this work titanium dioxide, one of high efficiency photocatalysts which is widely used in water treatement, was coated on the fabricated adsorbent composite substrate. The composite substrate composed of activated carbon and NaA zeolite presents high phenol adsorption because of high porosity and good ion exchange properties resulting in good adsorption property. Accordingly, the absorption could promote the photocatalytic activity of TiO2 catalyst. As the specimens were easily disposed after water treatment process, therefore, it was a good choice for lower energy consumption. The composite substrate was easily fabricated by simple extrusion and fired under non oxidation atmosphere at 650°C for 3 hours. Then polyurethane foam was inserted into the composite substrate to make it be able to float and be swirled by wind near water surface to get more UV excitation than deeper water. Phenol concentration was investigated by the UV absorbance at 270 nm using UV-Vis spectrophotometer. The XRD and SEM were used to study phase crystal structure and morphology of the composite.


2013 ◽  
Vol 3 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Papita Das Saha ◽  
Jaya Srivastava ◽  
Shamik Chowdhury

The efficacy of seashells as a new adsorbent for removal of phenol from aqueous solutions was studied by performing batch equilibrium tests under different operating parameters such as solution pH, adsorbent dose, initial phenol concentration, and temperature. The phenol removal efficiency remained unaffected when the initial pH of the phenol solution was in the range of 3–8. The amount of phenol adsorbed increased with increasing initial phenol concentration while it decreased with increasing temperature. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 175.27 mg g−1 at pH 4.0, initial phenol concentration = 50 mg L−1, adsorbent dose = 2 g and temperature = 293 K. Analysis of kinetic data showed that the adsorption process followed pseudo-second-order kinetics. Activation energy of the adsorption process, calculated using the Arrhenius equation, was found to be 51.38 kJ mol−1, suggesting that adsorption of phenol onto seashells involved chemical ion-exchange. The numerical value of the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) indicated that adsorption of phenol onto seashells was feasible, spontaneous and endothermic under the examined conditions. The study shows that seashells can be used as an economic adsorbent for removal of phenol from aqueous solution.


Author(s):  
Benoît Marrot ◽  
Adrian Barrios-Martinez ◽  
Philippe Moulin ◽  
Nicolas Roche

Phenol biodegradation by mixed culture was studied in a membrane bioreactor (MBR) over a period of 285 days. Activated sludge was used as the MBR biomass, after controlled acclimation to high phenol concentrations. The MBR permeate flux was stabilized quickly (in a few hours) and always maintained above 90 L.h-1.m-2.bar-1. The acclimatized activated sludge allowed significant phenol degradation (95% average COD removal efficiency and greater than 99% phenol removal efficiency) without supplemental reagent addition. After sludge acclimatization, the Haldane kinetics model for a single substrate was used to obtain the maximum specific growth rate (µm = 0.438 h-1), the half saturation coefficient (Ks = 29.54 mg.L-1) and the substrate inhibition constant (Ki = 72.45 mg.L-1). Biodegradation experiments were conducted at different phenol concentrations (4.9 – 8.5 g.L-1 d-1). Although the phenol concentration was high, the Haldane model was still acceptable, and removal capacities were in agreement with literature. Excellent effluent quality was obtained regardless of the extremely short SRT (5 – 17 days). This work shows the potential of MBR for toxic chemical elimination, charged effluents treatment and process stability.


2017 ◽  
Vol 77 (2) ◽  
pp. 504-510 ◽  
Author(s):  
Tao Deng ◽  
Hongyu Wang ◽  
Kai Yang

Abstract Phenol is a toxic pollutant in many kinds of hypersaline industrial effluents that should be treated properly before discharged into water bodies. In this work, a halophilic strain which could utilize phenol as the sole source of carbon and energy was isolated. Based on 16S rRNA results, it was identified as a member of Citrobacter. The phenol biodegradation ability and cell growth of the strain was evaluated with the variation of initial phenol concentration and salinity. The effect of temperature and pH on phenol removal was also investigated. The results showed that the strain was capable of withstanding high phenol (up to 1,100 mg L−1) environment with varying salinity conditions (0–10% of NaCl). The optimal initial phenol concentration was 400 mg L−1, at which the average removal rates of phenol peaked at 10.8 mg L−1 h−1. The higher initial concentration of phenol could inhibit the microbial metabolism. The optimal temperature, pH, and salinity were 35 °C, 6.0, and 0%, respectively. Under these conditions, 400 mg L−1 of phenol could be completely degraded within 20 h. The high removal rates of phenol by the strain might provide an alternative for treating phenolic wastewaters containing high salinity.


2019 ◽  
Vol 20 (1) ◽  
pp. 23-29
Author(s):  
Huda Adil Sabbar

The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature). The well-known Langmuir and Freundlich adsorption models were studied. The results show that the equilibrium data fitted to the Freundlich model with R2=0.9897 within the concentration range studied. The main objective of this study is finding the best mixing and conditions for phenol removal by adsorption via paper waste.


2010 ◽  
Vol 178 ◽  
pp. 196-201
Author(s):  
Can Li ◽  
Yan Ding ◽  
Jun Ping Meng ◽  
Li Fang Zhao

Porous tourmaline composite material (PTCM) was prepared mainly by schorl and used to catalyze hydrogen peroxide for the removal of phenol. The optimum reaction conditions were determined by testing the phenol removal rate under the conditions of different initial phenol concentration, hydrogen peroxide dosage, PTCM dosage and temperature. The reaction activation energy was calculated to be 32.148KJ/mol, indicating that PTCM showed good effect on catalyzing hydrogen peroxide, phenol could be degraded quickly and the removal rate could reach 97%. The mechanism of the system was the Fenton-like reaction


2013 ◽  
Vol 864-867 ◽  
pp. 1759-1762
Author(s):  
Maroš Soldán ◽  
Lenka Blinová ◽  
Jozef Fiala ◽  
Blanka Galbičková ◽  
Janka Ševčíková ◽  
...  

The objective of this study was to investigate the removal of phenol from aqueous solution by using activated and non-activated red mud in adsorption experiments. The study was carried out as function of red mud dosage and initial phenol concentration. It was found that the maximum removal was obtained at dosage of 0.5 g of red mud and initial concentration of phenol 40 mg/l. Activation has no positive effect on adsorption effectiveness.


Sign in / Sign up

Export Citation Format

Share Document